Funktionssikring af energieffektiv lysstyring

Kravspecifikation, entreprisegrænsen, indregulering og afprøvning

Claus Reinhold
Steen Traberg-Borup
Anette Hvidberg Velk
Jens Christoffersen

UDKAST
SENEST REVIDERET 2007-11-12
Titel: Funktionssikring af energieffektiv lysstyring
Undertitel: Kravspecifikation, entreprisegrænser, indregulering og afprøvning

Serietitel: Udgave: Udkast
Udgivelsesår: 2007
Forfattere: C. Reinhold, S. Traberg-Borup, A. Hvidberg Velk, J. Christoffersen
Redaktion: Dansk
Sidetal:
Litteraturnæringsninger: English
summary
Emneord:

ISBN

Pris
Tekstbehandling
Tegninger
Fotos
Omslag
Tryk

Udgiver: Statens Byggeforskningsinstitut, Aalborg Universitet
Dr. Neergaards Vej 15, DK-2970 Hørsholm
E-post sbi@sbi.dk
www.sbi.dk

Dette udkast er et arbejdspapir, og da der givetvis vil forekomme korrektioner og ændringer, må udkastet ikke offentliggøres eller citeres uden accept fra SBI.
Forord

Hermed foreligger et udkast til en SBI-anvisning om funktionssikring af energieffektiv lysstyring. Anvisningen er udarbejdet som del af et projekt, der er gennemført i samarbejde mellem SBI, Lysteknisk Selskab og DELTA (i pro- jektets første år), og med støtte fra Elnetselskabernes F&U-program for effektiv elanvendelse.

Derudover har projektet fået bistand fra en række rådgivere, producenter, leverandører og bygherrer, som har deltaget i følgegruppe, interviews og testprojekter. SBI vil hermed gerne takke alle de medvirkende for bistanden.

Dette udkast er et arbejdspapir, som er udarbejdet til brug ved seminarer i november og december 2007. Udkastet forventes at være meget nær ved den endelige SBI-anvisning, men der er fortsat mulighed for ændringer. SBI beder hermed om kommentarer og rettelser til udkastet, og da der givetvis vil forekommende korrektioner og ændringer, må udkastet ikke offentliggøres eller citeres uden accept fra SBI.

18. oktober 2007
SBI – Statens Byggeforskningsinstitut, Aalborg Universitet
Claus Reinhold
Introduktion til anvisningen

Baggrunden for anvisningen

SBI og Lysteknisk Selskab har, med bistand fra DELTA og en række rådgivere, producenter og bygherrer og med støtte fra Elnetselskabernes F&U-program for effektiv elanvendelse, gennemført et projekt om funktionssikring af energieffektive lysstyringssystemer. Projektholdet har undersøgt hvilke barrierer, der i praksis er for øget brug og større kundetilfredshed ved indførelse af lysstyring, og denne anvisning er et af resultaterne fra dette projekt.

Branchen er enig om, at der er for mange tilfælde, hvor kunden ikke får et tilfredsstillende system i sidste ende. Enten fordi det rent faktisk ikke virker korrekt, ikke svarer til brugernes behov eller fordi brugerne ikke forstår at bruge det.

I det følgende vil vi ganske kort præsentere nogle af de svage led, som vi har set.

Mundtlig kommunikation

På trods af et meget teknisk fagområde, fælles beskrivelsessystemer, digitalt byggeri osv., er den mundtlige kommunikation parterne imellem meget udbredt og tilsyneladende helt nødvendig for succes i alle led.

De fleste rådgivere udtaler, at de har god kontakt til bygherren og de kommende brugere. Uheldigvis er dette i modstrid med udsagn fra flere bygherrer, som synes, at der tages for lidt hensyn til vedligehold samt bygherrens og brugernes behov.

Alligevel mener flere rådgivere, at det er meget svært at formidle intensiteterne bag funktionsbeskrivelserne til installatører/montører, hvis der ikke er direkte kontakt.

Leverandørernes materiale er af meget varierende kvalitet. En meget stor del findes kun på engelsk, tysk eller svensk og bruger meget forskellig terminologi. Det viser sig, at leverandørerne i meget høj grad anvender mundtlig kommunikation til at informere om muligheder, brug, montage osv. Den
udstrakte brug af mundtlig kommunikation er tidskrævende, kan være vanskeligt tilgængelig og er svær at give videre og sjældent reproducerbart.

Udbudsmateriale og ansvar

Det synes som om de avancerede systemer kun kræves, hvis rådgiveren eller driftsorganisationen er direkte med i det samlede forløb helt frem til afprøvning. Jo mindre kontakt rådgiveren har med valg af teknik, installation, placering af sensorer osv. – jo simplicere systemer udbydes.

Installatørerne oplyser, at de generelt er fortrolige med opsætning af lysstyring. Nogle fortæller dog, at elektrikerne har svært ved at læse leverandørernes brugsanvisninger og ved at forstå det samlede anlægs funktion. Derfor går det ofte galt i mere komplekse sager.

Installatørerne er ikke enige om, hvor specifikt udbudsmaterialet fra rådgiverne bør være. Nogle vil helst have helt frie hænder til at sammensætte fornuftige løsninger ud fra en meget overordnet kravspecifikation. Andre ønsker, at udbudet præcist beskriver komponenter og placeringer. Installatørerne peger på det vigtige i at få placeret ansvaret for disse beslutninger.

Der er stor forskel på, hvem der udfører kvalitetsinspektionen på byggepladsen. Det mest almindelige er, at ansvaret er lagt hos installatøren. Kun få rådgivere fortæller, at de medvirker i installationsfasen og er aktive i indkøringen og afleveringen. Afprøvning er normalt kun stikprøver.

Brugerne spørger hvorfor?

Som nævnt er det sværeste at få brugerne til at forstå og bruge systemerne rigtigt. Beslutningen om lysstyring kommer ofte som et "diktat". Det kan give motivationsproblemer, fordi brugerne ikke oplever et behov. Det er vigtigt, at brugerne forstår **hvorfor**.

Flere har peget på, at det er vigtigt, at bygherre og rådgivere får bedre informationsmateriale med fokus på økonomi, energi og brugerkomfort mv. samt fordele/ulemper ved forskellige typer af systemer.

Konklusionen på undersøgelserne

Projektholdets konklusion på disse undersøgelser er, at alle parterne hver for sig gør en professionel indsats – men at totalindtrykket svækkes af manglende eller svag kommunikation i hver enkelt overdragelse mellem de involverede parter.

Det bedste billede på situationen er at sammenligne med den gamle berneleg, hvor en historie hviskes fra den ene til den anden osv. Alle trækker lidt fra og lægger lidt til, og det vil være rent tilfældigt, om det er den samme historie, som til sidst når frem. En byggesag om lysstyring har også mange involverede, hvoraf nogen måske mangler faglig ekspertise og andre har lidt forskellig hensigtsmæssig opfattelse af, hvad der er bedst.
I denne anvisning fokuseres på værktøjer, som medvirker til en forbedret og mere præcis skriftlig eller skemalagt kommunikation i processen – og specielt i overdragelserne fra en aktør til den næste en forbedret kommunikation om FUNKTIONER, ønsker og behov.

Anvisningen behandler blandt andet
beskrivelser af almindelige principper for lysstyring
skemaer til valg af styrings- og reguleringsstrategier
funktionsbeskrivelser
entreprisgrænse-skemaer
kontroplaner.

En del af anvisningens vejledninger er desuden baseret på systematik og erfaringer fra varme- og ventilationsbranchen, der er offentliggjort i tidligere SBI-anvisninger eller af Brancheforeningen for Bygningsautomation.

Vejledning i anvisningens brug

Denne SBI-anvisning indeholder vejledninger i, hvordan man kan vælge systemløsninger til automatisk styring af belysningen i almindeligt forekommende typer af rum. Desuden giver den anvisninger på, hvordan de valgte systemer beskrives, sådan at kommunikationen mellem alle de parter, der er involveret, sikres bedst muligt. Endeligt gives råd om indregulering og afprøvning af systemerne samt den efterfølgende instruktion af brugerne, sådan at brugerne sikres velfungerende løsninger.

Anvisningen er opbygget som en håndbog. En læser, som læser anvisningen i sin helhed, vil derfor finde en række gentagelser.

Anvisningen indeholder et gennemarbejdet eksempel på, hvordan anvisningens systematik bruges. Eksemplet findes ikke samlet, men er insat undervejs i tilknytning til håndbogsteksten.

Bagest i anvisningen findes en litteraturliste samt en række appendikser, som dels beskriver de mest anvendte begreber og dels supplierer håndbogen med erfaringer fra brug i praksis.

Baggrunden for at anvende lysstyring

Dagslyset i bygninger er ofte blevet betragtet udelukkende ud fra hensyn til arbejdspladsernes indretning, komfort for medarbejderne/beboerne og for at kunne følge med i årstidernes variation. En række undersøgelser viser, at medarbejdernes tilfredshed øges kraftigt med øget tilgang til dagslys og ud- syn. Efter indførelse af energirammen i Bygningsreglementet er det også nødvendigt at betragte dagslys ud fra betydningen for elforbruget i bygningen.

De nye energibestemmelser, som blev indført i 2006, betyder, at det i mange byggerier bliver nødvendigt at bruge flere forskellige former for lysstyring for at kunne holde elforbruget til belysningen nede. Ud over dagslysstyring findes en række automatiske tænd- og sluksystemer, som kan afbryde for kunstlyset, når der ikke er behov for belysning.

Da dagslyset ikke er konstant og hurtigt aftager ind igennem bygningen, er det ofte nødvendigt at dele belysningen i zoner for at udnytte dagslyset optimalt og for at opnå en god energieffektivitet.

Nogle rum som toiletter og gange har slet ikke adgang til dagslys, men her kan de automatiske tænd- og sluksystemer sikre, at energiforbruget til belysningen reduceres.

Lysstyring kan ofte reducere elforbruget til belysningen med 35-50 % afhængig af dagslys- og lokaleforhold samt af rummets benyttelsesgrad.

Et klasserum, hvor belysningen er opdelt i zoner, sådan at der i dette tilfælde er elektrisk belysning bag i rummet, mens armaturer nærmest vinduerne er slukkede. Kilde: Servodan.
Almindeligt anvendte automatikløsninger til styring af belysning

Hvad er automatisering?

Automatisering af et belysningsanlæg er en proces, der begynder ved med analyse af daglysadgangen (dagslysfaktoren), tilstedeværelse af personer som udgangspunkt for valg af kunstlysbelysning, projekttering, dimensionering og opbygning i delsystemer, zoner osv. En korrekt automatisering opnås kun, når automatik og belysningsanlæg passer sammen, og når der ved opbygning af belysningsanlægget er opnået en "automatikvenlig" konstruktion.

Automatisering kan for et givet anlæg udføres mere eller mindre vidtrækkende. Man taler ofte om en "automatiseringsgrad", der er vanskelig at definer, men som er et udtryk for det omfang, hvori anlægget er i stand til at opfylde de ønskede funktioner uden en stadig, manuel indgriben.

Til automatiseringen hører også instrumenter til kontrol af anlæggets funktioner, herunder melding om indtrådte fejl og/eller begyndende svagheder i systemet.

Fordele ved automatisering

Bruger tilfredshed
Brugerne har forskellige krav til belysningen afhængigt af opgavens art, alder, syn mv. Brugernes tilfredshed stiger, hvis de har en mulighed for selv at påvirke belysningen. Dette kan for eksempel ske ved at stille arbejdslamper til rådighed eller ved at montere kontakter eller lokale lysdæmpere.

Energi og driftsomkostninger
Der kan spares energi – og andre driftsomkostninger – ved kun at lade lyset være tændt, når der er brug for det, og ved at udnytte dagslyset som en del af det samlede "belysningssystem". Lampernes levetid forlænges og dermed bliver der mindre omkostninger til service. Der kan spares på driftsomkostninger ved at justere lysafgivelsen fra belysningsarmaturerne gennem et vedligeholdelsesforløb, sådan at lysafgivelsen forbliver konstant ("design maintained illuminance").

Reduktion af energiforbruget reducerer udledningen af CO2 og bidrager dermed til forbedring af det globale miljø.

Fleksibel brug af lokaler og bygninger
Nye arbejdsformer kræver større fleksibilitet af lokalerne, på tværs af lokalet, over dagen eller over længere tidsrum. Når nye aktiviteter sættes i gang kan kravene til belysningen ændres. En del af disse ændringer kan ske ved rigtig brug af automatiksystemer – for eksempel ved at regulere belysningsniveauet til forskellige niveauer afhængigt af tid eller andre parametre.
Hvis der skal opsættes rumdelere (flytbare skillevægge) eller flyttes vægge kan dette blive vanskeligt og bekosteligt, hvis ikke belysningsanlæg og automatik er opbygget efter tilsvarende fleksible principper. Dette er for eksempel muligt, hvis armaturer kan styres individuelt og uden at det skal ske fra én kontakt ved døren.

Information til vedligeholdelse

Den teknologiske udvikling

Den teknologiske udvikling vil formentlig give nye muligheder, som må indrages i beslutningerne i den konkrete situation.

Strategier for regulering og styring

Det overordnede mål med lysstyring er at undgå, at der bruges mere energi til kunstigt lys end nødvendigt samtidig med at brugernes komfort tilgodeses eller forbedres.

Funktionen kan være manuel eller automatisk – og er i realiteten ofte en kombination. For eksempel vil en automatisk regulering af lysniveauet ofte være kombineret med en urstyring eller en bevægelsesmelder – og med en manuel kontakt, så brugeren selv kan slukke for lyset.

Valg af strategier vil ofte være et kompromis, hvor fordele skal afvejes med ulemper. For eksempel kan regulatoringsystemer være ustabile, både under normal drift, under forhold med pludselige ændringer og ved tænding efter en periode med slukket lys. Det virker også forstyrrende, hvis anlægget reagerer for hurtigt og skruer op for lyset, lige så snart en sky går for solen.

Regulering

En regulering (også kaldet en lukket sløjfe) måler aktuelle ændringer i en reguleret størrelse og aktiverer reguleringssystemet ved at foretage en ændring for at opfylde ønsket til den regulerede størrelse. Denne korrigerende aktivitet fortsætter indtil den regulerede størrelse har opnået sin ønskede værdi indenfor regulatoringsystemets begrænsninger.

Styring

En styring (også kaldet en åben sløjfe) har ikke nogen direkte forbindelse fra den regulerede størrelse til automatikken. En styring – en åben sløjfe - bygger på en antagelse om, hvordan en ydre påvirkning vil påvirke systemet og justerer systemet for at undgå uacceptable udsving.

Et eksempel kunne være, at et skumringsrelæ konstaterer, at det "er for mørkt", hvorefter det tænder lyset. Men der sker ingen måling af, om lyset herefter er passende. Den projekterende antager altså en fast sammenhæng mellem en ydre påvirkning og behovet for elektrisk belysning, hvorimod den aktuelle situation og behovet (i et rum eller på et sted) ikke påvirker systemet.

Det automatiske udstyr

En sensor (på engelsk sensor) måler den regulerede størrelse – for eksempel en bordflades luminans – og sender værdien til "måleudstyret". Måleudstyret sammenligner den målte værdi med den indstillede værdi og genererer et signal, som aktiverer en ændring.
Den indstillede værdi
Den indstillede værdi (på engelsk setpoint) er værdien for det niveau, som man ønsker at opnå, for eksempel et lysniveau.

Automatisk regulering af lysniveau
Reguleringsystemer reagerer på de aktuelle ændringer på det sted, hvor man måler lysniveauet, og kan altså reagere på ændringer, uanset om de skyldes lyset uden for bygningen, genskær eller den elektriske belysning.

Reguleringen har både fordele og ulemper. Fordelen er, at man kan få en mere præcis justering af lysniveauet, når der sker ændringer i både kunstlyset og dagslyset. Samtidig følger et sådant system med, når der ændres på møbleringen i rummet eller når væggenes males eller smudses til med tiden. Ulempen er, at regulering af lysniveauet kan være ustabilt, både under normal drift, når der indtræder pludselige ændringer eller ved tænding efter en periode, hvor lyset har været slukket. Reguleringsystemer er derfor meget afhængige af korrekt sensorplacering og korrekt indstilling af reguleringsparametre.

I bygninger er stabilitet i reguleringen sjældent kritisk for sikkerhed, men en ustabilt regulering kan være generende, give unødvigt forbrug af energi og i sidste ende føre til at systemet sættes ud af drift.

Styring af belysningen efter lyset udenfor
Styring af belysningen efter lyset udenfor eller på vinduesfladen er en anden almindelig løsning. I modsætning til reguleringssystemet (se ovenfor) sker der ikke nogen måling af det aktuelle lysniveau på den flade, man ønsker at give en god belysning, for eksempel på arbejdspladsen. Derimod måler man det lys, der enten findes uden for bygningen, eller det lys, der kommer ind gennem vinduet. I afhængighed af denne måling fastsættes lysstrømmen fra armaturerne.

Også styringer har både fordele og ulemper. Systemer, som på denne måde er uafhængige af tilfældige hændelser, indretning og brugeradfærd, har den fordel at de er stabile i driften og enklere at sætte i drift, så de virker efter hensigten.

Men når systemer, der kun styrer efter ydre påvirkninger bruges til at styre elektrisk belysning eller solafskærmning, bliver resultatet somme tider en ujævn kvalitet eller skuffelser.

Simple løsninger med tilpasning efter behov
Simple løsninger har flere fordele. Først og fremmest at brugerne umiddelbart forstår systemerne og sammenhængen mellem handling og ændring. Dernæst at det er en generel erfaring, at brugetherligheder stiger, når brugerne selv har indflydelse på deres egen lokale situation.

I systemer, hvor belysningen tilpasses efter behovet, automatisk eller manuelt, er brugerne ofte involveret. For eksempel: Hvis der er for mørkt, så kør solafskærmningen op eller tænd lyset.

Men der er også ulemper ved at kombinere automatikken med brugernes deltagelse. Der er en tendens til, at den menneskelige reaktion på en diskomfort er at vælge den nemmeste løsning. Og det er ikke nødvendigvis den teknisk eller energiøkonomisk mest ønskelige. Derudover viser erfaringerne, at brugerne skal være i en ganske ukomfortabel situation, før de manuelt foretager den nødvendige ændring. Dette vil ofte føre til en utilfredsstillende situation.
Brugerne er ikke altid tilfredse
I bestrebelserne på at designe simple automatiske systemer risikerer man at bygge systemer, der fører til utilfredshed.

I lokaler med mange brugere, for eksempel storrumskontorer eller undervisningslokaler, vil handlinger omkring belysningen ofte påvirke mange mennesker. Og ofte vil handlingerne påvirke forskellige personer på forskellig måde. Der bør tages højde for mange af de deraf følgende diskussioner allerede ved planlægning af belysningen og ved valg af styringsprincipper. Endelig kan undtagelserne ofte resultere i at ustabile eller utilfredsstillende systemer ender i en utilfredsstillende og meget energiforbrugende tilstand. Hvis for eksempel en enkelt person er blændet af solen, kan det føre til at alle personer rulles ned og det elektriske lys tændes. Eller en enkelt person, der arbejder i weekenden, fører til at alt elektrisk lys er tændt.

Terminologi
Se i øvrigt Appendiks A, der indeholder en liste med en kort forklaring på de mest anvendte begreber.

Almindeligt anvendte automatikløsninger
I dette afsnit beskrives almindelige automatikløsninger for den generelle belysning i følgende gruppering:
- Tænd og sluk af lyset
 - Kontakter og lysdæmper
 - Urstyringer
 - Kontakter med automatisk sluk
 - Skumringsrelæ
 - Bevægelsesmelder eller tilstedeværelsessensor
- Styring eller regulering af lysniveauet
 - Styring af belysningen efter lyset udenfor
 - Styring efter lysindfaldet gennem vinduet
 - Automatisk regulering af lysniveauet
- Brugerens overstyring
 - Oversøjring med manuel kontakt
 - Oversøjring med manuel lysdæmper
 - Oversøjring med automatisk tilbagestilling

samt specielle driftsfunktioner, for eksempel:
- Belysning under rengøring
- Belysning under service
- Belysning under vægterens rundering.
Kontakter og lysdæmpere
Helt almindelige kontakter og lysdæmpere til manuel betjening er egentlig ikke en automatik-løsning – men er i større eller mindre grad i praksis altid en del af det samlede belysningssystem.

Manuelle kontakter og dæmpere bør være monteret let tilgængelige for brukerne og i umiddelbar nærhed af de armaturer, som de betjener. Hvis der bruges kontakter med flere indbyggede funktioner, er det vigtigt at mærke kontakterne så funktionere er let forståelige – især hvis der er skiftende brukere af rummene.

Løsningen giver brugeren en klar fornemmelse af at have personlig indflydelse på belysningen, og giver derfor ofte en god brugertilfredshed, under forudsætning af, at de valgte komponenter er lette at forstå og betjene.

Urstyringer

Urstyrning efter brugstid
Uurstyringer bruges til at tænde og slukke lyset efter faste rutiner, for eksempel ved arbejdstids ophør. Uurstyringerne bør supplieres med en manuel kontakt, som kan overstyre de fastlagte rutiner, sådan at lyset kan tændes og slukkes ved andre behov.

Uurstyring efter "astronomisk ur"
Især til udendørs belysning og belysning i gangarealer med store vinduer kan man bruges styring efter et "astronomisk ur" – dvs. et ur, som varierer tænd og sluk tidspunkter efter datoen (i teorien efter solens stilling på himlen).

Anvendelse
Uurstyring kan anvendes i rum, hvor brugen og/eller dagslysundnyttelsen kan forudses. For eksempel i produktionslokaler, foyer/lobby/forhal, gangarealer og udendørs belysning.

Fordeler og ulemper ved urstyringer
Uurstyringer er enkle og nemme at forstå. Til gengæld kan der opstå situationer, hvor lyset slukkes, selv om brugerne ikke venter eller ønsker det. Bør ikke bruges i rum, hvor der skal tages hensyn til sikkerhed (for eksempel i rum med maskiner).

For at gøre urstyringerne brugervenlige bør man, specielt ved systemer med central betjening, give mulighed for automatisk omstilling mellem sommer- og vintertid – og evt. et radiostyret ur, sådan at uret altid går rigtigt.

Kontakter med automatisk sluk
En løsning, der er så gammel og almindelig, at man glemmer den, er løsningen, hvor brugeren tænder på en kontakt og lyset automatisk slukker efter et fast tidsrum. Tidsrummet kan eventuelt være indstilleligt.

Anvendelse
Løsningen bruges typisk i lager- og depotrum, på bi-trapper og i rum med jævnlige, men korte besøg. Bør ikke bruges i rum, hvor der skal tages hensyn til sikkerhed (for eksempel i rum med maskiner).
Fordele og ulemper

Løsningen er enkel og nem at forstå. Til gengæld kan der opstå situationer, hvor lyset slukkes, selv om brugerne ikke venter eller ønsker det.

Skumringsrelæ

Et skumringsrelæ tænder og slukker belysningen automatisk. Et skumringsrelæ måler lysets styrke, og aktivører en kontakt, når lyset (dagslyset) sværer til det indstillede niveau. Kontakten deaktiveres, når lyset igen er kraftigere end en (lidt højere) grænse.

Kortvarige lysforandringer fra skyer, autolygter, lyn etc. vil ikke aktivere relæet - da der er indbygget en tidsforsinkelse.

Anvendelse

Skumringsrelæer anvendes for det meste udendørs.

Fordele og ulemper

Skumringsrelæet tænder belysningen, når der er behov og ved samme lysniveau, uanset om det er sommer eller vinter. Dermed har skumringsrelæet en fordel frem for et kontaktur, hvor tidsindstillinger løbende skal justeres.

Bevægelsesmelder eller tilstedeværelsessensor

Bevægelsesmelderen bruges for at spare energi, når rummet ikke er i brug. Bevægelsesmelderen er en sensor, som registrerer bevægelser i rummet og dermed om der er personer til stede (kaldes derfor også en tilstedeværelsessensor).

Den mest almindelige funktion er, at lyset tændes umiddelbart, når bevægelsesmelderen registrerer en "person i rummet". Lyset slukkes automatisk igen, når der ikke har været registreret bevægelse/person i et fastsat antal minutter – dvs. at der er indlagt en tidsforsinkelse på slukningen. Tidsforsinkelsen er nødvendig for at undgå, at lyset slukkes hver gang brugeren forlader rummet for et kort øjeblik.

Der findes bevægelsesmeldere af forskellige typer, for eksempel: Passiv Infrarød (PIR), akustisk, ultralyd og en kombination, hvor en infrarød måling tænder lyset, mens en ultralydsmåling holder lyset tændt.

Passiv infrarød (PIR)

Sensorens princip er, at den registrerer forandringer i temperatur. For at sensoren skal kunne registrere denne forandring, skal bevægelserne ske med en vis fart, og personens overfladetemperatur skal være mindst fem grader højere eller lavere end de omgivende fladers temperatur. Følsomheden af sensoren og det område i rummet, som sensoren kan dække, afhænger derfor bl.a. af temperaturforskellen mellem personer og omgivelserne, bevægelsernes fart og retning, sensorens placering og sensorens (linsens) opbygning og inddeling af rummet.

PIR-sensorer findes med et antal forskellige linser, som giver forskellig følsomhed og rækkevidde.

Sensoren vil normalt ikke registrere langsomme temperaturforandringer i rummet. Men hvis den er placeret, så den kan registrere hurtige temperaturforandringer, vil disse blive opfattet som en bevægelse. Sensoren bør derfor ikke placeres nær en radiator, printer eller kopimaskine, ligesom de ikke må udsættes for direkte sollys.

Akustisk
Den akustiske sensor virker som en mikrofon, der opfatter lyde eller trykforandringer. Sensorerne findes med forskellige måleområder, sådan at de ikke reagerer på fuglefløj eller en forbikørende bil.

Den akustiske sensor er anvendelig i rum med mange kroge eller områder, der ikke kan overvåges af en PIR-sensor. Den anvendes derfor for eksempel i trapperum, omklædningsrum og garager, og kan overvejes i storrumskontor- rer med høje rumdelere.

Ultralyd

Ultralydssensoren er baseret på reflekteret lyd, der ændrer sig når personer bevæger sig. Fordelen er, at den kan registrere bevægelser i kontorlandskaber, og at den kan reagere på bevægelser ned til nogle få centimeter, for eksempel ved PC arbejde.

Eksempel på bevægelsesmelder med to linser, og til nederst vises det tilsvarende dækningsområde.
Sensoren er kombineret med lyssensor. Kilde: Wexøe.

Anvendelse
Bevægelsesmeldere bruges primært i rum, som ikke bruges konstant, og hvor brugerne ofte glemmer at slukke lyset, når rummet ikke bruges. Eksempler er klasserum på en skole, små kontorer samt toiletrom og garderober. De er specielt egnete i rum, hvor brugerne har hænderne fulde, når de kommer ind i rummet.

De kan også bruges til at tænde arbejdsbelysning ved specielle arbejdspladser, for eksempel arbejdssubsern over en kopimaskine.

Bevægelsesmeldere kan monteres på væg eller i loft. Specielt ved placering på væg skal man være opmærksom på, at sensorerne ikke må kunne forveksles med en normal kontakt eller må kunne beskadiges af transportborde eller lignende.

Bevægelsesmelderne skal placeres, så de kan registrere en person i alle relevante dele af rummet. Det kan være nødvendigt med flere meldere (eventuelt forskellige typer) for at dække et rum, for eksempel hvis rummet er delt af skillevægge/romdelere eller reoler kan dække forudsigtet at visse arbejdspladser eller opholdssteder. Men lige så vigtigt er det at bevægelsesmelderen ikke påvirkes af bevægelser udenfor rummene, f.eks. således at lyset tændes i alle småkontorerne når man færdes ned gennem gangen.

Fordelte og ulemper
Funktionen – at lyset tænder, når der er mennesker i rummet og slukker, når rummet er tomt – er let at forstå. De er stabile i drift og enkle at sætte i drift, så de virker efter hensigten.

Bevægelsesmelderne har dels den ulempe, at deres funktion er afhængig af rummets indretning, der kan forhindre, at sensoren kan registrere bevægelser og dels, at ‘stillesiddende’ personer kan opleve, at lyset slukkes selv om de er i rummet. Begge forhold kan forebygges ved valg og placering af sensor (+er). Se senere i kapitel om ‘Indregulering af lysstyringer’.

Styring efter lysniveau uden for bygningen (vejrstation)
I områder, hvor dagslyset helt eller delvist kan dække behovet, kan den elektriske belysning dæmpes i forhold til behovet. Denne dæmpning er i
funktion, når der manuelt, med urstyring eller ved bevægelsesmelder er tændt for lyset.

Lysniveauet uden for bygningen måles med en lyssensor, der er placeret på et frit sted, dvs. uden skygge i dagens løb. Sensoren kan typisk være monte-
ret på taget. Den generelle belysning (baggrundsbelysning, loftsbelysning)
dæmpes eller slukkes i afhængighed af det udendørs lysniveau. I bygninger
med stor rumdybde bør løsningen kombineres med en opdeling i zoner, så-
dan at lyset dæmpes mest i zoner nær ved vinduerne, og mindre i zoner
længere inde i rummene, svarende til den mindre dagslysfaktor længere in-
de i rummene.

I det enkelte rum kan denne løsning kombineres med en bevægelsesmelder,
som slukker helt for belysningen når rummet ikke benyttes.

Anvendelse

Løsningen anvendes mest på store bygninger med en central vejrstation –
dermed også et centralt bygningsautomatiksystem.

Systemet bruges til at dæmpe den generelle belysning i alle de rum, som
(mere eller mindre) kan udnytte dagslyset, og hvor individuelle behov for en
kraftigere belysning kan opfyldes med arbejdslamper eller lignende. Syste-
met bør ikke dæmpe belysningen i rum, der er afhængige af den elektriske
belysning, heller ikke når solen skinner udenfor.

Fordelers og ulemper

Denne løsning er uafhængig af tilfældige hændelser, indretning og brugerad-
færd, og har den fordel at den er stabil i driften og enklere at sætte i drift, så
den virker efter hensigten.

Men når systemer, der kun styrer efter ydre påvirkninger bruges til at styre
elektrisk belysning, bliver resultatet somme tider en ujævn kvalitet eller skuf-
felser. Dette kan skyldes, at systemerne forudsætter "at en løsning passer til
alle", eller at brugerne ikke forstår, hvorfor lyset ændres lige nu. Hvis for ek-
sempel lyset dæmpes eller slukkes, får alle det samme "nye" lysniveau –
også den ældre eller synshandikappede, som har brug for mere lys. Hvis au-
tomatikken styrer lyset i et meget stort område, kan personen med specielle
behov blive årsag til at hele systemet sættes ud af funktion. En anden årsag
til problemer eller skuffelser kan være, at elektrisk belysning og solafskærm-
ing ikke er fuldt integreret. Nogen projekterende anser sommersol for en
uønsket varmekilde, mens andre ønsker fornemmelsen af "sommer og sol", i
det mindste i et tidsrum. Omvendt om vinteren, hvor et energihensyn vil an-
se solen for "gratisvarme", mens nogen generere vil generes af blænding.

Disse negative sider modvirkes ved at give mulighed for individuel tilpasning
ved brug af arbejdslamper og lignende, samt ved at give brugerne god in-
formation om virkemåde og hensigt.

Styring efter lysindfaldet gennem vinduet

Eksempel på vejledning om placering af sensor, der er rettet mod vinduet. Kilde: Servodan
I områder, hvor daglyset helt eller delvist kan dække behovet, kan den elektriske belysning dæmpes i forhold til dagslysets tilstedeværelse. Denne dæmpning er i funktion, når der manuelt, med urstyring eller ved bevægel sesmelder er tændt for lyset.

Det dagslys, som rent faktisk kommer ind i rummet, måles med en lyssensor som er rettet mod vinduet. Den generelle belysning (baggrundslysning, loftsbelysning) dæmpes eller slukkes i afhængighed af dagslyset, der kommer ind i rummet. I bygninger med stor rumdybde bør løsningen kombinieres med en opdeling i zoner, sådan at lyset dæmpes mest i zoner nær ved vinderne, og mindre i zoner længere inde i rummene, i forhold til zonernes daglys faktor.

I det enkelte rum kan denne løsning kombineres med en bevægelsesmelder, som slukker helt for belysningen når rummet ikke benyttes.

Anvendelse

Løsningen anvendes i rum, hvor dagslyset kan dække en væsentlig del af behovet for belysning, og hvor individuelle behov for en kraftigere belysning kan opfyldes med arbejdslamper eller lignende. Der monteres normalt en sensor i hvert rum.

Fordele og ulemper

Denne løsning er uafhængig af tilfældige hændelser, indretning og brugeradfærd, og har den fordøl at den er stabil i driften og enklere at sætte i drift, så den virker efter hensigten. Det kan dog være nødvendigt at justere systemet, hvis man ændrer på indretningen og dermed ændrer på dagslysforkondse.

Hvis systemet bruges i storrumskontorer eller andre rum med mange bruger, har dette system i nogen grad de samme ulemper som det foregående system (Styring efter lysniveau uden for bygningen (vejrstation)).
Automatisk regulering af lysniveauet

I områder, hvor dagslyset helt eller delvist kan dække behovet, kan den elektriske belysning dæmpes i forhold til behovet. Denne dæmpning er i funktion, når der manuelt, med urstyring eller ved bevægelsesmelder er tændt for lyset.

I en kontorbygning eller en skole ville man ideelt ønske at regulere lysniveauet på arbejdspladsen. Det ideelle ville være at placere lyssensoren på arbejdspladsen. Det er sjældent muligt, og derfor placeres sensorerne normalt i loftet, eventuelt indbygget i lysarmaturerne. Sensorerne måler det lys, der reflekteres fra arbejdspladsen, og er derfor følsom over for ændringer, for eksempel at der pludseligt tændes en arbejdslampe, at der lægges et stort stykke hvidt papir på bordet eller at en person passerer forbi i sensorens "synsfelt".

De følere og systemer, der er udviklet specielt til formålet: lysstyring, har taget højde for disse mulige problemer ved at udforme sensorerne med et passende stort synsfelt og ved at indlægge passende tidsforsinkelser, der modvirker pludselige ændringer på grund af tilfældige, kortvarige hændelser.

Eksempel på lyssensor, der er indbygget i lysarmatur. Kilde: Philips Lys

Anvendelse

Regulering af lysniveau anvendes i rum, hvor der er mulighed for at udnytte dagslyset, hvor der er ensartede aktiviteter og hvor kravene til belysning derfor ikke ændres, når rummet er i brug. Det kan for eksempel være i kontorer, møderum, udstillingslokaler.

Eksempler på lyssensorer til måling af lysniveauet i rummet. Kilder Servodan, nnnnnnnnnnnnnnn og nnnnnnnnnnnnnnnnnnnnnnnn

Sensor og sensorplacering

Der findes sensorer med forskellige egenskaber og udformninger, ligesom sensorerne kan fås, så lyssensor og bevægelsesmelder er sammenbygget til én komponent.

Lyssensorerne er konstrueret til at måle lys, der er reflekteret fra indendørs overflader (eller mere præcis: den lysstrøm, der rammer sensoren eller den belysningsstyrke, der er på sensoren, fra lys fra de af rummets overflader, der befinder sig indenfor sensorens dedekteringsområde). Hvis lyssensoren rammes direkte af sollys eller lys fra armaturer, vil reguleringen ofte blive ustabil eller umulig.

Der findes sensorer beregnet udelukkende til at måle dagslys, og sensorer beregnet til en blanding af dagslys og elektrisk lys, ligesom der findes sensorer, som er specielt beregnet til højloftede lokaler.

Lyssensoren bør vælges og placeres sådan, at det område som dækkes af sensoren er så stort, at den målte refleksion repræsenterer et stabilt gen-
nemsnit for området. Lyssensorerne og systemerne bør være udformet sådan, at personers bevægelse i gangarealer og lignende ikke påvirker systemet. Sensoren bør ikke kunne rammes af lys eller refleksioner fra omgivelserne, for eksempel i naboområder.

Installation warning

Leverandørkataloger indeholder ofte vejledninger om korrekt montering af sensorer, her for lyssensorer indbygget i armaturer. Kilde: Philips Lys

Eksempel på vejledning o placering af sensor, der måler det indfaldende lys gennem vinduet. Kilde: Servodan.

Lyssensoren måler det lys, der reflekteres fra overfladerne inden for "synsfeltet". Lys reflekteres forskelligt fra forskellige overflader, for eksempel papir, møbler og gulvtæpper, og lyssensorerne i bygningen bør derfor kunne indstilles eller kalibreres individuelt efter de aktuelle forhold.

Eksempel på lyssensor, hvor følsomheden kan indstilles i selve sensoren. Kilde: Philips Lys

Fordele og ulemper

En velfungerende regulering af lysniveau vil kunne udnytte dagslyset og dermed spare elektricitet. Samtidigt vil den kunne øge brugertilfredsheden, fordi lyset konstant har det rigtige niveau.

Reguleringen reagerer på ændringer, i dette tilfælde på ændringer i det lys, der rammer sensoren. Ændringer kan, som beskrevet ovenfor, skyldes en pludselig forandring i sollyset, ændring af den elektriske belysning på "synsfeltet" (for eksempel at en PC eller arbejdslampe bliver tændt), ændringer i "overfladerne" (for eksempel flytning af papir), en persons bevægelser og
I modsætning til et radiatoranlæg kan der i et belysningsanlæg ske pludselige og hurtige ændringer, og reguleringsystemet kan derved blive ustabilt og begynde at pendle. Disse forhold kan til en vis grad modvirkes ved at vælge en sensor med et større detekteringsområde.

Uhensigtsmæssig brugeradfærd kan have negative følger. Hvis brugerne for eksempel trækker gardiner for eller sænker solafskærmningen, vil reguleringen søge at holde det ønskede lysniveau, om nødvendigt ved at øge den elektriske belysning.

Regulering (med lukket sløjfe) er derfor på én gang den bedste og den vanskeligste type automatik. Valg af sensor, sensorplacering samt indkøring og afprøvning får dermed en meget stor betydning for, om systemet får succes eller om brugerne bliver så utilfredse, at de sætter automatikken ud af drift.

Læs mere om sensorplacering i et senere afsnit om indkøring.

Integreret regulering

I områder, hvor dagslyset helt eller delvist kan dække behovet, kan lysniveauet reguleres i forhold til behovet. Denne dæmpning er i funktion, når der manuelt, med urstyring eller ved bevægelsesmelder er tændt for lyset.

En del bygninger har bevægelig solafskærmning. En større grad af udnyttelse af dagslyset kan ofte ske ved at integrere automatikken for solafskærmningen og for den elektriske belysning. Dette kan for eksempel ske ved at styre solafskærmningen efter en lyssensor uden for bygningen.

Der monteres en lyssensor i rummet, som måler lysniveauet et givet sted, og lysniveauet regulatorer til et indstillet niveau. Reguleringsystemer reagerer på de aktuelle ændringer på det sted, hvor man måler lysniveauet, og kan altså reagere på ændringer, uanset om de skyldes lyset uden for bygningen, genskær eller den elektriske belysning. Se i øvrigt beskrivelsen ovenfor.

Anvendelse

Integreret regulering er primært anvendelig i bygninger med et centralt bygningsautomatiksystem.

Fordele og ulemper

I forhold til den foregående løsning vil en integreret regulering ofte kunne spare energi. Desuden vil en integration af solafskærmningen ofte kunne give en bedre lyskvalitet, idet solafskærmningen vil kunne forhindre direkte solindstråling, blænding mv. samtidig med, at dagslyset udnottes forud for elektrisk belysning.

En ulempe er, at brugerne mister overblikket og forståelsen for systemets funktion. Hvis solafskærmningen styres ensartet over en hel facade vil den enkelte bruger ikke have mulighed for overstyring, se nedenfor.

Overstyring med manuel kontakt

En almindelig løsning er, at brugeren på en kontakt (for eksempel ved døren) selv kan tænde eller slukke for den generelle belysning i rummet.
Anvendelse
Bruges i kombination med bevægelsesmelder og/eller styring eller regulering.

Fordel og ulemper
Simple løsninger har flere fordele. Først og fremmest at brugerne umiddelbart forstår systemerne og sammenhængen mellem handling og ændring. Dernæst at det er en generel erfaring, at brugertilfredsheden stiger, når brugerne selv har indflydelse på deres egen lokale situation.

Men der er også ulemper. Der er en tendens til, at den menneskelige reaktion på en diskomfort, er at vælge den nemmeste løsning. Og det er ikke nødvendigvis den teknisk eller energiøkonomisk mest ønskelige. Derudover viser erfaringerne, at brugerne skal være i en ganske ukomfortabel situation, før de manuelt foretager den nødvendige ændring. Dette vil ofte føre til en utilfredsstillende situation.

I lokaler med mange brugere, for eksempel storrumskontorer eller undervisningslokaler, vil handlinger omkring belysningen ofte påvirke mange mennesker. Enkeltpersoner vil derfor sjældent gribe ind, med mindre de kan nøjes med at regulere sin egen situation, som f.eks. med arbejdslampen.

Et godt råd om overstyringer
Brugertilfredsheden hænger sammen med, at der er nemt og letforståeligt at betjene teknikken uden at begå fejl. Derfor skal det for eksempel være nemt at lænde lyset, når man kommer ind i et lokale. For at undgå forvekslinger bør andre overstyringer ikke placeres der, hvor man forventer en normal kontakt (i normal højde lige inden for døren). Overstyringer kan for eksempel placeres højere (for eksempel 1,80 m) eller et andet sted i lokalet.

Overstyring med manuel lysdæmper
I visse rum, for eksempel undervisningsrum, kan det være nødvendigt at kunne sætte automatikken helt ud af kraft og selv styre/dæmpe belysningen.

Brugeren kan på lysdæmper (for eksempel ved døren) selv indstille det ønskede belysningsniveau.

Anvendelse
Bruges i kombination med dagslysregulering eller integreret regulering.

Fordel og ulemper
Se ovenfor.
Overstyring med automatisk tilbagestilling

Hvis brugerne ved at bruge overstyringen sætter automatikken ud af funktion, vil man ofte glemme at sætte tilbage til den ’energieffektive’ indstilling. Den oprindelige indstilling sikres ved at etablere en automatisk tilbagestilling (på engelsk "reset"), for eksempel efter et vist tidsrum eller på et fast tidspunkt hver dag.

Anvendelse

Bruges i forbindelse med overstyring med kontakt eller lysdæmper.

Fordel og ulempe

Fordelen er, at et kortvarigt behov for en ændret indstilling ikke fører til en permanent ændret drift.

Ulempen er, at en bruger som har behov for en anden indstilling en 'standard', vil have behov for jævnligt at foretage en manuel overstyring. Dette problem bør dog løses ved at en permanent ændret indstilling, for eksempel af belysningsniveau, eller en ændret placering af sensorer.
Valg af lysstyringer

Forudsætninger for valg af lysstyring

Rumtyper
Lysstyringen skal tilpasses behovet i det enkelte rum. I det følgende er rumtypen valgt som den første indgang til valg af systemløsning. Der er taget udgangspunkt i ofte forekommende rumtyper, som beskrevet i DS700 "Kunststig belysning i arbejdslokaler".

Rummets størrelse
Den relevante lysstyringsløsning afhænger af det enkelte rums dimensioner og kompleksitet, f.eks. rummets højde, bredde, dybde, om rummet har vinkeform eller om rummet evt. skal kunne underopdeles i mindre lokaler, der skal kunne anvendes hver for sig.

Opdeling i zoner

I det følgende er behovet for zonedelingen specifikt fremhævet de steder, hvor det ud fra et lysstyrings synspunkt er særligt relevant at inddele belysningen i flere zoner uanset rummets størrelse. Uanset rumtype bør man dog i alle situationer tage stilling til en relevant zonedeling.

Brugsmønster
I valget af systemløsning skelnes der i det følgende mellem
- om rummet normalt er i brug i veldefinerede tidsrum – for eksempel indenfor normal arbejds-, undervisnings- eller åbningstid
- om rummet kun bruges lejlighedsvis
- om rummets brugsmønster er varierende over tiden.

Det har desuden betydning, om rummet har "en eller få ejere" – som kender rummet og kan betjene udstyret – eller om der er mange forskellige brugere.

Styring efter tilstedeværelse
Der er ingen grund til, at lyset unødigt står tændt i et tomt rum. I åbne rum kan én bevægelsessensor ofte placeres, så den "kan se" alle de, der er til stede i rummet. I andre rum kan det være vanskeligt at få placeret én bevægelsessensor, så hele den relevante del af rummet detekteres. Årsagen kan for eksempel være rum i vinkelform, rum med høje, men flytbare skilleveggge, grønne planter, reoler eller lignende. Der skal i valget af systemløsning derfor tages stilling til hvor mange sensorer, der skal til for at dække rummet samt om der evt. er behov for at kombinere forskellige typer sensorer.
Udnyttelse af dagslys

Der er mange gode argumenter for at sætte fokus på udnyttelsen af dagslyset, når man planlægger og projekterer belysningen i en bygning.

Dagslyset har stor betydning for menneskers almene trivsel og dermed også for medarbejdernes effektivitet eller skolebørnenes indlæringsevne, tryghed og fornemmelse af rum, tid og sted. Dagslyssets indfald og bevægelse i rummet er af afgørende betydning for, hvordan vi oplever et rum, når vi træder ind i det. Lyset er nemlig i høj grad med til at skabe rummet. Og endelig bidrager en god dagslysudnyttelse væsentligt til at spare på energien til belysning.

Belysningssystemet og lysstyringen bør derfor planlægges og projekteres, så det naturlige lys i størst mulig udstrækning dækker behovet for lys ved den mangfoldighed af aktiviteter, som udfolder sig i rummene.

Bygningsreglementet\(^1\) pgf. 6.5.2 stiller krav om, at

\textit{Arbejdsrum, opholdsrum i institutioner, undervisningslokaler, spiserum samt beboelsesrum skal have en sådan tilgang af dagslys, at rummene er vel belyste. Vinduerne skal udføres, placeres og eventuelt afskærmes, så solindfald gennem dem ikke medfører overophedning i rummene, og så gener ved direkte solstråling kan undgås.}

I Bygningsreglementet pgf. 6.5.3 stilles krav om, at

\textit{Arbejdsrum og fælles adgangsveje skal have kunstig belysning i forøndent omfang. For de kendte typer arbejdsrum, der er omfattet af serien DS 700, Kunstig belysning i arbejdslokaler, skal disse standarder benyttes.}

Bygningsreglementets krav må opfattes som minimumskrav. De kan sikre et tilstrækkeligt belysnings\textit{niveau}, men de er langt fra tilstrækkelige til at sikre en tilstrækkelig belysnings\textit{kvalitet}.

\textbf{Aktiviteternes krav til belysningen}

Ved valg af systemløsning må der tages hensyn til, om der i rummet kun foregår en enkelt aktivitet, som i princippet altid kræver det samme lys, eller om aktiviteterne veksler gennem dagen og dermed stiller forskellige krav til lyset.

Det er vigtigt, at man som projekterende har kendskab til, hvilke aktiviteter der skal foregå i de forskellige områder og i de enkelte rum.

De fleste virksomheder stiller i dag meget større krav til rummenes fleksibilitet og mangfoldighed i anvendelse, end det var tilfældet tidligere. Derfor må den projekterende sørge for at skabe flere forskellige muligheder for ‘lys-sætninger’, for eksempel ved dagslys alene, ved kunstlys alene og i situationer med samspil mellem dagslys og kunstlys. Ved planlægning af forskellige

\footnotesize{1 Bygningsreglement ’07, høringsudgaven – endnu ikke trådt i kraft}
lyssætninger er det vigtigt at huske, at alle ”lyskilder”, både vinduer og belysningsarmaturer, bidrager til rummets visuelle kvalitet.

Strategier for styring af belysningen
Det samlede system til styring af belysningen omfatter både funktioner, der vedrører den normale daglige aktivitet i rummene, og nogle specialfunktioner, som rummenes normale brugere ikke oplever, men som kan være meget vigtige for andre personer eller i andre situationer end den normale brug.

Systematikken i denne anvisning bygger på en opdeling efter
- hvordan lyset tændes og slukkes
- hvad der sker, når lyset er tændt
- brugerens muligheder for at overstyre automatikken
- specielle funktioner, der aktiveres efter behov – enten automatisk eller manuelt.

Normal daglig drift
Den generelle belysning

<table>
<thead>
<tr>
<th>Tænd og sluk</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Manuel tænd og sluk</td>
<td></td>
</tr>
<tr>
<td>- Ur-funktion efter brugstid</td>
<td></td>
</tr>
<tr>
<td>- Ur-funktion efter ”astronomisk ur”</td>
<td></td>
</tr>
<tr>
<td>- Lyssensor (dagslysblokrering, skumringsrelæ)</td>
<td></td>
</tr>
<tr>
<td>- Bevægelsessensor</td>
<td></td>
</tr>
<tr>
<td>- Fintfølende bevægelsessensor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Styring eller regulering af lysniveauet</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Manuel lysdæmper</td>
<td></td>
</tr>
<tr>
<td>- Styring efter dagslysniveauet</td>
<td></td>
</tr>
<tr>
<td>- udendørs</td>
<td></td>
</tr>
<tr>
<td>- indendørs</td>
<td></td>
</tr>
<tr>
<td>- Regulering efter kombination af dagslys og kunstlys i rummet</td>
<td></td>
</tr>
<tr>
<td>- Integreret regulering (solafskærmning og dagslys)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brugerens overstyring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Manuel tænd og manuel sluk</td>
<td></td>
</tr>
<tr>
<td>- Manuel tænd og automatisk sluk</td>
<td></td>
</tr>
<tr>
<td>- Manuel lysdæmpning</td>
<td></td>
</tr>
<tr>
<td>- Automatisk tilbagestilling (reset)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specielle driftsfunktioner</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Rengøring</td>
<td></td>
</tr>
<tr>
<td>- Service</td>
<td></td>
</tr>
<tr>
<td>- Vægterfunktion</td>
<td></td>
</tr>
<tr>
<td>- Filmforevisning (scenesætning)</td>
<td></td>
</tr>
<tr>
<td>- Filmforevisning (automatik blokeret)</td>
<td></td>
</tr>
<tr>
<td>- Tavelys (manuel tænd og altid automatisk sluk)</td>
<td></td>
</tr>
</tbody>
</table>

Eksempler på funktioner i hver af de hovedgrupper, som omtales i anvisningen. Ikke alle funktioner er beskrevet lige detaljeret i anvisningen.

Typiske valg af styringsstrategier.

I nedenstående skema gives eksempler på typiske valg af styringsstrategier. Rumtyperne er beskrevet med udgangspunkt i DS700.
I skemaet er valgt betegnelsen 'kontinueret dagslysstyring' som en fælles betegnelse for

– Styring efter lysniveau uden for bygningen (vejrstation)
– Styring efter lysindfaldet gennem vinduet
– Automatisk regulering af lysniveauet.

Valget af den konkrete løsning afhænger af en række faktorer, som beskrevet tidligere i anvisningen.
<table>
<thead>
<tr>
<th>Rumtype</th>
<th>Brugsmønster</th>
<th>Dagslys-adgang</th>
<th>Aktiviteteres krav</th>
<th>Forslag til funktioner og strategier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lejlighedsvis</td>
<td>Dagslys</td>
<td>Der er skillevægge i lokalet.</td>
<td>Belysningen bør deles i zoner. Overvej behov for fælles/sepærat styring af de enkelte sektioner.</td>
</tr>
<tr>
<td>Biblioteker</td>
<td>Skranke, læserum og udlandslokale i øvrigt</td>
<td>Normalt</td>
<td>Dagslys</td>
<td>Lyset er tændt i hele åbningstiden</td>
</tr>
<tr>
<td>Lager</td>
<td></td>
<td></td>
<td></td>
<td>Overvej kontinuerd dagslysstyring. Overvej fintfølende bevægelsessensorer. Hvis cafeteri- et kun benyttes lejlighedsvist midt på dagen kan overvejes et skumningsrelæ (on/off styring efter lyseføler).</td>
</tr>
<tr>
<td>Cafeteria</td>
<td>Lejlighedsvis</td>
<td>Dagslys</td>
<td>Overvej automatisk styring efter dagslysforhold og brugstid, og overvej bevægelsesmelder, med mindre særlige forhold gør sig gældende, f.eks. sikkerhedshensyn.</td>
<td></td>
</tr>
<tr>
<td>Fælles adgangsvej og udendørsarealer</td>
<td>Evt. dagslys</td>
<td></td>
<td>Overvej bevægelsessensorer samt automatisk kontinuerd eller skumningsrelæ.</td>
<td></td>
</tr>
<tr>
<td>Gange og trapper</td>
<td>Fælles adgangsvej</td>
<td></td>
<td>Se under Fælles adgangsvej</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Andre gange og trapper</td>
<td>Varierende</td>
<td>Ingen dagslys</td>
<td>Lyset efterlades tændt i lange perioder</td>
</tr>
<tr>
<td></td>
<td>Varierende</td>
<td>Dagslys</td>
<td>Lyset efterlades tændt i lange perioder</td>
<td>Overvej bevægelsessensorer samt automatisk kontinuerd eller skumningsrelæ.</td>
</tr>
<tr>
<td>Hotelværelser</td>
<td>Lejlighedsvis</td>
<td>Dagslys</td>
<td>Lyset skal altid være tændt i dagtimerne</td>
<td>Overvej kontinuerd dagslysstyring.</td>
</tr>
<tr>
<td>Hoteller</td>
<td>Normalt</td>
<td>Dagslys</td>
<td>Lyset kan slukkes, når der er nok dagslys.</td>
<td>Overvej kontinuerd eller on/off dagslysstyring. Overvej bevægelsessensorn.</td>
</tr>
<tr>
<td>Kantine</td>
<td></td>
<td></td>
<td></td>
<td>Se Cafeteria</td>
</tr>
<tr>
<td>Konferencerum</td>
<td></td>
<td></td>
<td></td>
<td>Se Auditorier</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arvika uden vedvarende arbejde</td>
<td>Lejlighedvis</td>
<td>Evt. dagslys</td>
<td></td>
<td>Overvej kontinueret dagslysstyring samt bevægelsessensorer til automatisk sluk.</td>
</tr>
<tr>
<td>Laboratorier</td>
<td>Normalt</td>
<td>Dagslys</td>
<td></td>
<td>Overvej kontinueret dagslysstyring samt bevægelsessensorer til automatisk sluk.</td>
</tr>
<tr>
<td>Lager</td>
<td>Lejlighedvis</td>
<td>Evt. dagslys</td>
<td></td>
<td>Overvej kontinueret dagslysstyring. Overvej bevægelsessensorer.</td>
</tr>
<tr>
<td></td>
<td>Normalt</td>
<td>Dagslys</td>
<td></td>
<td>Overvej at supplere med kontinueret eller on/off dagslysstyring.</td>
</tr>
<tr>
<td>Lægeklinik</td>
<td>Normalt</td>
<td>Dagslys</td>
<td>Skiftende belysningsbehov til forskellige undersøgelser.</td>
<td>Overvej manuel lysdæmpning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ved mindre rum, der ejer i brug hele tiden.</td>
<td>Overvej bevægelsessensorer.</td>
</tr>
<tr>
<td>Ventesal og værelser</td>
<td>Normalt</td>
<td>Dagslys</td>
<td></td>
<td>Overvej kontinueret dagslysstyring.</td>
</tr>
<tr>
<td>Sengestuer</td>
<td>Normalt</td>
<td>Dagslys</td>
<td>Skiftende belysningsbehov til f.eks. at se tv, læse, sove og foretage lægeundersøgelser</td>
<td>Overvej manuel lysdæmpning. Bevægelsessensorer vil ikke være egnete.</td>
</tr>
<tr>
<td>Mødelokale</td>
<td></td>
<td></td>
<td></td>
<td>Se Auditorier</td>
</tr>
<tr>
<td>Fælles adgangsvej</td>
<td>Fælles adgangsvej</td>
<td></td>
<td></td>
<td>Se lovkvar under Fælles adgangsvej</td>
</tr>
<tr>
<td>Øvrige parkeringsanlæg, -hallere og garager</td>
<td>Varierende</td>
<td>Ingen dagslys</td>
<td>Lyset er ofte tændt i hele åbningstiden.</td>
<td>Overvej bevægelsessensorer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dagslys</td>
<td>Lyset er ofte tændt i hele åbningstiden.</td>
</tr>
<tr>
<td>Ind- og udkørselszone</td>
<td>Varierende</td>
<td>Dagslys</td>
<td>Der er meget trafik og varierende lysniveau inde og ude over dag-nemt</td>
<td>Overvej kontinueret lysstyring efter udendørsbelysningsniveauet. (Lavt lysniveau om natten, højere om dagen) for at undgå store luminansspring og øge trafiksikkerheden.</td>
</tr>
<tr>
<td>Rengøring</td>
<td>1-2 gange dagligt</td>
<td>Evt. dagslys</td>
<td>Der er behov for speciel rengøringslys.</td>
<td>Overveje central kontrol/urstyring.</td>
</tr>
<tr>
<td>Selvbetjeningsvaskerier og -rensere</td>
<td></td>
<td></td>
<td></td>
<td>Se Vaskeri</td>
</tr>
</tbody>
</table>
| Skoler | Normalt | Dagslys | Lokalet anvendes til mange varierende formål f.eks. fremvisning af film, overheads, brug af tavle, skrivning, læsning, klassedemonstrationer mv. | Belysningen bør deles i zoner. Overvej kontinueret dagslysstyring af almenbelysningen. Overvej manuel brugenstyring (lysdæmpning, tænd/sluk) af automatisk sluk af både ugnen,
Central kontrol/Urstyring

Aulaer og festsale (uden skriftligt arbejde)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brug for skiftende lys sætninger til forskellige typer motion, skriftligt arbejde, fester mv.</td>
</tr>
<tr>
<td>Der er skillevægge i salen.</td>
</tr>
</tbody>
</table>

Gymnastiksale

<table>
<thead>
<tr>
<th>Normalt</th>
<th>Dagslys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belysningen skal kunne reguleres. Se i øvrigt Gymnastiksale.</td>
<td></td>
</tr>
<tr>
<td>Brug for skiftende lys sætninger til forskellige typer motion, skriftligt arbejde, fester mv.</td>
<td></td>
</tr>
</tbody>
</table>

Bade- og omklædningsrum

<table>
<thead>
<tr>
<th>Lejlighedsvis</th>
<th>Evt. dagslys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyset efterlades ofte tændt.</td>
<td>Overvej bevægelsessensorer til automatisk sluk.</td>
</tr>
</tbody>
</table>

Toiletter

<table>
<thead>
<tr>
<th>Varierende</th>
<th>Evt. dagslys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der er båse/skillerum</td>
<td></td>
</tr>
<tr>
<td>Lyset efterlades ofte tændt. Overvej en fintfølende bevægelsessensor.</td>
<td></td>
</tr>
</tbody>
</table>

Vaskeri

<table>
<thead>
<tr>
<th>Varierende</th>
<th>Dagslys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyset efterlades ofte tændt.</td>
<td>Overvej fintfølende bevægelsessensorer.</td>
</tr>
</tbody>
</table>

Sekundære rum, ej med i DS700

<table>
<thead>
<tr>
<th>Lejlighedsvis</th>
<th>Evt. dagslys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyset efterlades ofte tændt.</td>
<td>Overvej bevægelsessensorer.</td>
</tr>
</tbody>
</table>

For rumtyper, som ikke er nævnt ovenfor, kan foretages individuelle skøn med udgangspunkt i den anvendte metodik.

Eksempel på valg af lysstyring

Eksempel 1 på valg af lysstyring.

Rumtype

- Kontor

Brugsprofi

- Kontor med en enkelt bruger

Brugsprofen

- Bruges inden for normal kontortid. Brugeren forlader jævnlig kontoret for at gå til møder.

Dagslystilstand

- Der er gode vinduer, som giver et godt lysindfald i rummet

Aktiviteter

- Det meste af tiden er brugeren beskæftiget med normale kontoraktiviteter ved skrivebord og PC.

Strategier

- Kontinuer dagslysstyring kombineret med en fintfølende bevægelsessensor til automatisk sluk. Kontakt til manuel tænding af belysningen.

Kontor

<table>
<thead>
<tr>
<th>1-2 mandskontor</th>
<th>Lejlighedsvis</th>
<th>Dagslys</th>
<th>Lyset efterlades ofte tændt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overvej manuel lysdæmpning eller kontinuer dagslysstyring. Overvej manuel tænding og fintfølende bevægelsessensor til automatisk sluk.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Den relevante linje i skemaet, som leder frem til valget af eksemplet strategier.
Eksempel 2 på valg af lysstyring.

<table>
<thead>
<tr>
<th>Rumtype</th>
<th>Kontor med en enkelt bruger. Kontoret bruges dog også som et mindre møderum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brugsmønster</td>
<td>Bruges inden for normal kontortid. Arbejde uden for normal arbejdstid kan forekomme. Brugeren forlader jævnligt kontoret for at gå til møder. Der holdes ligeledes jævnligt møder på kontoret; møderne er ikke planlagt i forvejen.</td>
</tr>
<tr>
<td>Dagslys</td>
<td>Der er gode vinduer, som giver et godt lysindfald i rummet</td>
</tr>
<tr>
<td>Aktiviteter</td>
<td>Det meste af tiden er brugeren beskæftiget med normale kontoraktiviteter ved skrivebord og PC. Ved møderne kan der vises præsentationer med PC og projektor.</td>
</tr>
<tr>
<td>Strategier</td>
<td>Kontinuerligt dagslysstyring kombineret med en bevægelsessensor til automatisk sluk. Brugeren får mulighed for at overstyre den automatiske styring med manuel tænd/sluk.</td>
</tr>
</tbody>
</table>

Den relevante linje i skemaet, som leder frem til valget af eksemplet strategier. Herudover suppleres med muligheder for manuel overstyring på grund af forskellige krav for hhv. kontorarbejde og møder.

Eksempel 3 på brug af skemaet.

<table>
<thead>
<tr>
<th>Rumtype</th>
<th>Normalt klasselokale.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brugsmønster</td>
<td>Bruges kun i dagtimerne inden for normal undervisningstid. Der anvendes præsentationer med PC og projektor i undervisningen. Rummet bruges af vekslende lærere og elever.</td>
</tr>
<tr>
<td>Dagslys</td>
<td>Der er gode vinduer, som giver et godt lysindfald i rummet</td>
</tr>
<tr>
<td>Aktiviteter</td>
<td>Undervisningen varierer mellem tavleundervisning, præsentationer på projektor, arbejde i grupper og selvfølgt arbejde.</td>
</tr>
</tbody>
</table>

Den relevante linje i skemaet, som leder frem til valget af eksemplets strategier.
Eksempel 4 på brug af skemaet.

Rumtype Storrumskontor med 8 personer. To rækker borde med gang i midten. Små lave skillevægge. Mødebord med særligt belysning i den ene ende af lokalet.

Brugsmønster Bruges inden for normal kontortid. Arbejde uden for normal arbejdstid kan forekomme. Brugerne kommer og går på skift.

Dagslys Der er gode vinduer, parallellæn med ganglinien, som giver et godt lysindfald i rummet.

Aktiviteter Det meste af tiden er brugerne beskæftige med normale kontoraktiviteter ved skrivebord og PC. Ind imellem holder en eller flere brugere møde.

Strategier Almenbelysningen opdeles i én zone langs vinduesfacaden og én zone langs bagvæggen. Kontinueret styring af almenbelysningen i to zoner efter dagslys. Manuel tænd af almen belysning og manuel tænd/sluk af lys over mødebord. Fintfølende bevægelsessensorer slukker for almenbelysning og lys over mødebord.

<table>
<thead>
<tr>
<th>Kontor</th>
<th>Storums kontor</th>
<th>Normalt</th>
<th>Dagslys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lyset efterlades ofte tændt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Overvej fintfølende bevægelsessensor til detektering af bevægelse/lyd.</td>
</tr>
</tbody>
</table>

De relevante linjer i skemaet, som leder frem til valget af eksemplets strategier.

Eksempel 5 på brug af skemaet.

Rumtype Konferenceraum med foldedør, så rummet kan opdeles i to selvstændige lokaler.

Dagslys Der er gode vinduer, som giver et godt lysindfald i rummet.

Aktiviteter Rummet bruges til foredrag, filmfremvisning og møder.

Strategier Rummet opdeles i én zone for lokale I og én zone for lokale II. I hvert zone installeres fintfølende bevægelsessensor, der automatisk slukker alt lys, når lokalet er tomt. Brugeren kan aktivere forskellige forprogrammerede belysningsscener (kombinationer af tændte/slukkede og dæmpede armaturer) samt vinduesafskærmning afhængig af lokalets anvendelse. Når foldedør åbnes, kobles bevægelsessensorer og dæmpere i de to zoner sammen, så aktivering af betjenningspanel styrer lyset i hele rummet og lyset automatisk slukkes i hele rummet, når lokalet forlades.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lejlighedsvis</td>
<td>Dagslys</td>
<td>Der er skillevægge i lokalet.</td>
<td>Belysningen bør deles i zoner. Overvej behov for fælles/separat styring af de enkelte sektioner.</td>
<td></td>
</tr>
</tbody>
</table>
Funktionsbeskrivelser for lysstyringer

Krav om gode funktionsbeskrivelser

Som beskrevet i afsnittet "Introduktion til anvisningen" er det vigtigt, at det er den rigtige funktionsbeskrivelse, der anvendes i alle led i hele projektet. Funktionerne skal derfor beskrives så godt og i et sprog, at alle parter i projektet får den samme opfattelse af, hvordan lysstyringen skal fungere. Funktionsbeskrivelsen skal være så god, at den kan bruges som "manuskript" af alle de, der skal "genfortælle historien" – hver enkelt kan så tilføje sine detaljer og aspekter, men uden at kernen forandres.

Eksempler på beskrivelser for enkeltfunktioner

De følgende eksempler på beskrivelser af de enkelte funktioner er ment som inspiration, og intentionen er, at de enkelte beskrivelser derefter kan stykkes sammen til en samlet funktionsbeskrivelse for et rum eller et system.

Beskrivelser for den generelle belysning

Automatisk tænd og sluk, bevægelsesmelder

| En sensor i rummet registrerer bevægelser, når der er mennesker tilstede, og tænder automatisk for belysningen. |
| Belysningen slukkes automatisk, når rummet har været ubenyttet et antal minutter. |
| Eksempel på beskrivelse af automatisk tænd og sluk med bevægelsesmelder |

| En sensor i rummet registrerer bevægelser, når der er mennesker tilstede, og tænder automatisk for belysningen. |
| Belysningen slukkes automatisk, når rummet har været ubenyttet et antal minutter. Dette tidsrum kan indstilles i bygningens centrale system. |
| Eksempel på beskrivelse af automatisk tænd og sluk med bevægelsesmelder, hvor indstilling af tidsrum sker centraalt, for eksempel i et overordnet bygningsautomatiksystem. |

| En sensor i rummet registrerer bevægelser, når der er mennesker tilstede, og tænder automatisk for belysningen. |
| Belysningen slukkes automatisk, når rummet har været ubenyttet et antal minutter. Dette tidsrum kan indstilles i sensoren. |
| Eksempel på beskrivelse af automatisk tænd og sluk med bevægelsesmelder, hvor indstilling af tidsrum sker decentralt, dvs. i sensoren/regulatoren. |

Styring efter lysniveau uden for bygningen (vejrstation)

| En sensor uden for bygningen måler det udendørs lysniveau. |
| Belysningen tændes ikke, hvis det udendørs lysniveau er over en indstillet grænse, som er indstillet i bygningens centrale system. |
| Hvis det udendørs lysniveau er under denne grænse, justeres belysningen i afhængighed af det udendørs lysniveau. |
| I rum med stor rumdybde er belysningen opdelt i zoner, sådan at lyset dæmpes mest i zoner nær ved vinduerne, og mindre i zoner længere inde i rummene. |
Eksempel på beskrivelse af dagslysstyring, hvor indstilling af dagslysniveauet kan indstilles centralt, for eksempel i et integreret bygningsautomatiksystem.

Styring efter lysindfaldet gennem vinduet

En sensor, der er rettet mod vinduet, måler det dagslys, som kommer ind i rummet.

Belysningen tændes ikke, hvis lysindfaldet er over en indstillet grænse, som er indstillet af installatøren.

Hvis det lysindfaldet er under denne grænse, justeres belysningen i afhængighed af lysindfaldet.

I rum med stor rumdybde er belysningen opdelt i zoner, sådan at lyset dæmpes mest i zoner nær ved vinduerne, og mindre i zoner længere inde i rummene.

Eksempel på beskrivelse af dagslysstyring, hvor indstilling af dagslysniveauet kun kan indstilles af installatøren, typisk i tavle.

Regulering af lysniveauet

En sensor i rummet måler lysniveauet.

Belysningen tændes ikke, hvis dagslys niveauet er tilstrækkeligt højt.

Hvis dagslys niveauet ikke er tilstrækkeligt reguleres den generelle belysning til et niveau, som er indstillet af installatøren.

Eksempel på beskrivelse af dagslysregulering, hvor indstilling af dagslys niveauet kun kan indstilles af installatøren, typisk i tavle.

Sensoren i rummet har flere funktioner, og måler også lysniveauet.

Belysningen tændes ikke, hvis dagslys niveauet er tilstrækkeligt højt.

Hvis dagslys niveauet ikke er tilstrækkeligt reguleres den generelle belysning til et niveau, som er indstillet i bygningens centrale system.

Eksempel på beskrivelse af dagslysregulering, hvor indstilling af dagslys niveauet kan indstilles centralt, for eksempel i et integreret bygningsautomatiksystem.

Brugerens overstyring, lysdæmper

Brugeren kan på lysdæmper ved døren selv indstille det ønskede belysnings niveau - derved sættes automatikken ud af kraft i 2 timer.

Eksempel på, hvordan brugerens mulighed for at overstyre dagslys reguleringen kan beskrives.

Brugerens overstyring, kontakt

Brugeren kan på kontakt ved døren selv slukke for den generelle belysning i rummet. Ved næste tryk (samme dag) på kontakten kobles automatikken ind igen.

Eksempel på, hvordan brugerens mulighed for at overstyre dagslys reguleringen kan beskrives.

Eksempel på, hvordan brugerens mulighed for at overstyre dagslys reguleringen kan beskrives, hvis bygningen har et centralt system, for eksempel et integreret bygningsautomatikssystem.

Beskrivelser for specialfunktioner

Specialfunktionerne er til for at støtte nogle funktioner, der typisk udføres uden for normal arbejdstid. Det er derfor vigtigt at drøfte disse funktioner i detaljer. Specialt er der diskussion om, hvilken vægterfunktion, der er den bedste. Nogen vægtere ønsker totalt mørke, andre lidt lys tændt.

Rengøring

I tidsrummet, hvor rengøring normalt finder sted, tænder lyset automatisk på fuld styrke når der registres bevægelse i rummet.
Eksempel på, hvordan en overstyring af hensyn til rengøringen kan beskrives.

Service
Ved specialfunktion i den centrale automatik kan alt lyset i bygningen tændes på fuld styrke af hensyn til service.

Eksempel på, hvordan en overstyring af hensyn til service og kontrol af lamper kan beskrives.

Vægterfunktion
Under vægterrundering sættes automatikken ud af funktion, sådan at lyset ikke tænder, selv om der registreres bevægelse i rummet.

Et eksempel på, hvordan en overstyring af hensyn til vægterens rundering kan beskrives.

Under vægterrundering sættes automatikken ud af funktion, sådan at et bestemt antal og mønster af lamper tændes, når der registreres bevægelse i rummet. Lamperne slukkes automatisk, når der ikke er registreret bevægelse i et antal minutter, der indstilles i automatikken.

Et andet eksempel på, hvordan en overstyring af hensyn til vægterens rundering kan beskrives.

Eksempler på typiske funktionsbeskrivelser

Eksempel 1 på funktionsbeskrivelse
Det følgende eksempel viser en funktionsbeskrivelse, der svarer til det valg af lysstyring, der blev præsenteret i eksempel 1 på valg af lysstyring, side xx, og som er opbygget af enkeltfunktioner, som beskrevet ovenfor.

<table>
<thead>
<tr>
<th>Normal daglig drift</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Den generelle belysning</td>
<td>En sensor i rummet registrerer bevægelser, når der er mennesker tilstede, og tænder automatisk for belysningen.</td>
</tr>
<tr>
<td>Tænd og sluk</td>
<td>Belysningen slukkes automatisk, når rummet har været ubenyttet et antal minutter.</td>
</tr>
<tr>
<td>Styring eller regulering af lys niveaueret</td>
<td>Sensoren i rummet har flere funktioner, og måler også lysniveauet.</td>
</tr>
<tr>
<td></td>
<td>Belysningen tændes ikke, hvis dagslysniveauet er tilstrækkeligt højt.</td>
</tr>
<tr>
<td></td>
<td>Hvis dagslysniveauet ikke er tilstrækkeligt reguleres den generelle belysning til et niveau, som er indstillet af installatoren.</td>
</tr>
<tr>
<td>Arbejdslamper</td>
<td>Arbejdslamper</td>
</tr>
<tr>
<td>Tænd og sluk</td>
<td>Brugeren tænder og slukker selv for arbejdslamper.</td>
</tr>
</tbody>
</table>

Eksempel 2 på funktionsbeskrivelse.
Det følgende eksempel viser en funktionsbeskrivelse, der svarer til det valg af lysstyring, der blev præsenteret i eksempel 2 på valg af lysstyring, side xx.
Normal daglig drift

Den generelle belysning

Tænd og sluk	En sensor i rummet registrerer bevægelser, når der er mennesker tilstede, og tænder automatisk for belysningen. Belysningen slukkes automatisk, når rummet har været ubenyttet et antal minutter.
Styring eller regulering af lysniveauet	Sensoren i rummet har flere funktioner, og måler også lysniveauet. Belysningen tændes ikke, hvis dagslysniveauet er tilstrækkeligt højt. Hvis dagslysniveauet ikke er tilstrækkeligt reguleres den generelle belysning til et niveau, som er indstillet af installatøren.
Brugerens overstyring	Brugeren kan på lysdæmper ved døren selv indstille det ønskede belysningsniveau - derved sættes automatikken ud af kraft i 2 timer. Brugeren kan på kontakt ved døren selv slukke for den generelle belysning i rummet. Ved næste tryk (samme dag) på kontakten kobles automatikken ind igen. Automatikken kobles i alle tilfælde ind igen kl. 20.

Arbejdslamper

| **Tænd og sluk** | Brugeren tænder og slukker selv for arbejdslamper. |

Specielle driftsfunktioner

Rengøring	I tidsrummet, hvor rengøring normalt finder sted, tænder lyset automatisk på fuld styrke, når der registreres bevægelse i rummet.
Service	Ved specialfunktion i den centrale automatik kan alt lyset i bygningen tændes på fuld styrke af hensyn til service.
Vægterfunktion	Under vægterrundering sættes automatikken ud af funktion, sådan at lyset ikke tænder, selv om der registreres bevægelse i rummet.

Eksempel 3 på funktionsbeskrivelse.
Det følgende eksempel viser en funktionsbeskrivelse, der svarer til det valg af lysstyring, der blev præsenteret i eksempel 3 på valg af lysstyring, side xx.

Normal daglig brug

| **Den generelle belysning** | Nogle sensorer i rummet registrerer bevægelser, når der er mennesker tilstede, og tænder automatisk for loftsbelysningen. Al belysningen slukkes automatisk, når rummet har... |
| **Styring eller regulering af lysniveauet** | Sensoren i rummet har flere funktioner, og måler også lysniveauet.

Lysarmaturene er delt i to grupper, facaderækken og rækken mod bagvæggen. Lysniveauet måles i hvert af disse områder, og hver gruppe styres for sig.

Lysarmaturet placeret i en gruppe tændes ikke, hvis dagslysniveauet er tilstrækkeligt højt.

Hvis dagslysniveauet ikke er tilstrækkeligt reguleres belysningen i gruppen til et niveau, som er indstillet i bygningens centrale system.

Det betyder, at der normalt vil være kraftigere lys fra den bageste række armaturer. |
| **Brugerens overstyring** | Brugeren kan på lysdæmper på væggen selv indstille det ønskede belysningsniveau for hvert af de to områder – derved sættes automatikken ud af kraft i 2 timer.

Brugeren kan på kontakt på væggen selv slukke for loftsbelysningen i rummet. Ved næste tryk (samme dag) på kontakten kobles automatikken ind igen. Automatikken kobles i alle tilfælde ind igen kl. 20. |
| **Tavlelys** | Brugeren tænder og slukker selv for tavlelyset.

Tavlelyset slukkes dog automatisk sammen med loftslysset, når rummet har været ubenyttet et antal minutter. Dette tidsrum kan indstilles i bygningens centrale system. |
Specielle driftsfunktioner	I tidsrummet, hvor rengøring normalt finder sted, tænder lyset automatisk på fuld styrke, når der registreres bevægelse i rummet.
Rengøring	Ved specialfunktion i den centrale automatik kan alt lyset i bygningen tændes på fuld styrke af hensyn til service.
Service	Under vægterrundering sættes automatikken ud af funktion, sådan at lyset ikke tænder, selv om der registreres bevægelse i rummet.
Vægterfunktion	**Vægterfunktion**
Udbud af lysstyring

Beskrivelsesprincipper

Afsnittets eksempler bygger på bips beskrivelsesprincipper
De eksempler på beskrivelser, der er givet i denne anvisning, er søgt opbygget så de følger principperne, der er givet af foreningen **bips**, **byggeri - informationsteknologi - produktivitet – samarbejde**. Yderligere oplysninger på www.bips.dk.

Et arbejde beskrives efter bips’ principper ved en arbejdsbeskrivelse og tilhørende tegninger. Arbejdsbeskrivelsen indeholder bl.a. bygningsdelsbeskrivelser.

Bygningsdelsbeskrivelserne er altid projektspecifikke. Bips’ beskrivelsesanvisninger indeholder paradigmer for bygningsdelsbeskrivelser og eksempler på anvendelsen.

Bygningsdelsbeskrivelser for lysstyringer
Ifølge bips’ paradigma for bygningsdelsbeskrivelser for el-arbejder skal en sådan indeholde følgende punkter:

– Omfang og lokalisering
– Tegningshenvisning
– Tilstødende bygningsdele
– Projektering
– Materialer og produkter
– Udførelse
– Prøver
– Kontrol
– Arbejdsmiljø
– Dokumentation
– Servicekontrakt
– Instruktion

Som det ses, fremgår ”funktionsbeskrivelser” ikke direkte. Følgegruppen for det projekt, som står bag denne anvisning og som bl.a. omfatter en række rådgivende ingeniører, har anbefalet at bygningsdelsbeskrivelser for lysstyringer skal omfatte en funktionsbeskrivelse, der indarbejdes efter tegningshenvisningerne. Dette princip er fulgt i eksemplerne.
Eksempel på bygningsdelsbeskrivelse: Lysstyring af standardkontor

Identifikation
Lysstyring for standardkontor.

Omfang og lokalisering
Denne lysstyring udføres i alle standardkontorer.

Tegningshenvisning
Der henvises til
A. rumskemaer XX XXX XXX…….
B. tegninger XX XXX XXX, YY YYY YYY og ZZ ZZZ ZZZ…….

Funktionsbeskrivelse

<table>
<thead>
<tr>
<th>Normal daglig drift</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Den generelle belysning</td>
<td></td>
</tr>
<tr>
<td>Tænd og sluk</td>
<td>En sensor i rummet registrerer bevægelser, når der er mennesker tilstede, og tænder automatisk for belysningen. Belysningen slukkes automatisk, når rummet har været ubenyttet et antal minutter.</td>
</tr>
<tr>
<td>Styring eller regulering af lysniveauet</td>
<td>Sensoren i rummet har flere funktioner, og måler også lysniveauet. Belysningen tændes ikke, hvis dagslysniveauet er tilstrækkeligt højt. Hvis dagslysniveauet ikke er tilstrækkeligt reguleres den generelle belysning til et niveau, som er indstillet af installatøren.</td>
</tr>
<tr>
<td>Arbejdslamper</td>
<td></td>
</tr>
<tr>
<td>Tænd og sluk</td>
<td>Bruger tænder og slukker selv for arbejdslamper.</td>
</tr>
<tr>
<td>Specielle driftsfunktioner</td>
<td></td>
</tr>
<tr>
<td>Rengøring</td>
<td>I tidsrummet, hvor rengøring normalt finder sted, tænder lyset automatisk på fuld styrke når der registreres bevægelse i rummet.</td>
</tr>
<tr>
<td>Service</td>
<td>Ved specialfunktion i den centrale automatik kan alt lyset i bygningen tændes på fuld styrke af hensyn til service.</td>
</tr>
<tr>
<td>Vægterfunktion</td>
<td>Under vægterrundering sættes automatikken ud af funktion, sådan at lyset ikke tænder, selv om der registreres bevægelse i rummet.</td>
</tr>
</tbody>
</table>

44
Tilstødende bygningsdele

Når lyset i kontoret er tændt, tændes lyset på det tilstødende gangareal automatisk – idet dette dog også reguleres med hensyntagen til dagslyset.

Følgende signaler udveksles med det integrerede bygningsautomatiks System:

A. Indstillet tidsforsinkelse for bevægelsesmelder.
B. Indstillet lysniveau for belysningssensor.
C. Aktuelt signal for bevægelsesmelder (rummet i brug).

Udførelse

Den generelle belysning i rummet skal tænde momentant (inden 0,x sekunder) ved aktivering af bevægelsesmelder.

Udførelsen omfatter bl.a. :

A. Indstilling af tidsforsinkelse i bevægelsesmelder, vejledende indstilling 10 minutter. Tidsforsinkelsen skal kunne indstilles individuelt for hvert rum.
B. Indstilling af lysniveau for lysregulering, vejledende værdier oplyses af rådgiver efter montage i prøverum. Lysniveauet skal kunne indstilles individuelt for hvert rum.
C. Indstilling af reguleringsparametre for lysregulering. Lysregulering udføres som P eller PI regulering.
D. Indstilling af grænseværdier for lysreguleringen. Lyset slukkes, når udgangssignalet til de regulerbare forkoblingsenheder har været under en grænseværdi, for eksempel 5 %, i 10 minutter. Automatikken genindkobles, når udgangssignalet har været over en højere grænseværdi, for eksempel 10 %, i mere end 5 minutter.

Kontrol

Udover de generelle krav til kontrol, som er angivet i udbudsmaterialet, omfatter kontrol i det enkelte rum en funktionsafprøvning af alle de beskrevne funktioner.

Dokumentation

For hvert enkelt rum afleveres "Check- og indstillingsliste". I denne liste gives både indstillingsværdier ved afleveringen samt afkrydsering for afprøvet funktion. Skemaerne afleveres på elektronisk form i henhold til....

Instruktion

Der skal til hvert enkelt rumtype afleveres en brugervejledning, som senere kan udleveres til brugerne.

Brugervejledningen skal i principippet udføres på samme niveau som ovenstående funktionsbeskrivelse, men skal ved afleveringen tilpasses de konkrete installationer og komponenter.
Entreprisegrænseskemaer for lysstyring

I denne anvisning er der direkte og indirekte beskrevet en lang række valg og arbejdsopgaver, som skal gennemføres i forbindelse med et projekt. Hvem, der skal udføre hvilke opgaver, afhænger blandt andet af opgavens størrelse, bygherrens organisation og de øvrige deltagere i projektet. Men det er vigtigt at sikre, at der tages stilling til hver eneste opgave, om den skal udføres, og hvem der i så fald skal gøre det.

Nedenstående entreprisegrænseskema lister en væsentlig del af de enkelt-opgaver, som skal gennemtænkes, og kan samtidigt være en hjælp til at fastlægge, hvem der har ansvaret for at udføre den enkelte opgave. Skemaet er et forslag, som der kan bygges videre på i den konkrete situation.

Dette forslag omfatter kun arbejder, som direkte vedrører lysstyring. Fælles bestemmelser vedrørende byggeplads, arbejdsmiljø, elinstallationer generelt osv. er ikke omfattet.
Projektmateriale

<table>
<thead>
<tr>
<th>Bygherre</th>
<th>Arkladet</th>
<th>Belysningentreproner</th>
<th>Lysstyrings-/Automatikentreproner</th>
<th>Elektroner</th>
<th>Driftsorganisation</th>
</tr>
</thead>
</table>

- Plantegninger og snit
- Beskrive rumtyper, arbejdsfunktioner mv.
- Mebleringsplan (er)
- Fastlæggelse af krav til belysning, overholdelse af lovkrav
- Beregning af belysningsparameter (dagslys faktor mv.)
- Valg af armatur, lyskilde og forkoblingshovedtyper
- Fastlægge armaturplaceringer
- Dimensionering af belysningssystem
- Zoneopdeling
- Fastlægge sensorplaceringer
- Beregning af det forventede energiforbrug i driftsfasen
- Krav til kommunikation med anden automatik
- Fjernbetjeninger
- Fastlægge føringsveje
- Bygningsdelsbeskrivelser, herunder funktionsbeskrivelser
- Fastlægge placering af øvrige komponenter
- Hovedstrømskema for kraft
- Kredsskema for lysstyringssystem
- Konfigurationstegninger
- Liste for indstillingsværdier (lysniveauer, tidsfor sinkelser, grænseværdier mv.)
- Udformning af check- og indstillingslister

Automatikkomponenter og el-tavler

<table>
<thead>
<tr>
<th>Bygherre</th>
<th>Arkladet</th>
<th>Belysningentreproner</th>
<th>Lysstyrings-/Automatikentreproner</th>
<th>Elektroner</th>
<th>Driftsorganisation</th>
</tr>
</thead>
</table>

- Regulatorer og transformere
- Betjeningssomskifret, indikatorfamper, hjælpeteleør
- Sensorer, signalgivere
- Øvrige automatikkomponenter
- Montage af automatik i rum
- Montage af automatik i tavler
- Montage af automatik på udvendige overflader
- Komponentskilt
- Automatiktavle (er)
- Krafttavler inkl. sikringer, gruppeafbrydere mv.
- Kontrol af placering af komponenter

El-arbejder mv.
| Programmering, levering og idriftsættelse af centrale betjeningsudstyr |
|--------------------------|-----------------|
| Opsætning af automatiktavle (-er) |
| Opsætning af krafttavle (-er) hvis separat |
| El-installation mellem automatik- og krafttavle (hvis separat) |
| Forsyningsspænding til tavle (-r) |
| El-inst. mellem tavle og kraft inden for teknikrum |
| El-inst. mellem tavle og automatik inden for teknikrum |
| El-inst. mellem tavle og kraft uden for teknikrum |
| El-inst. mellem tavle og automatik uden for teknikrum |
| Kabelbakker og føringsveje inden for teknikrum |
| Kabelbakker og føringsveje uden for teknikrum |
| Kabelmærkning |
| Kontrol og dokumentation af el-installation |

Indstilling og indkøring

| Indstilling af automatikudstyr, reguleringsparametre osv., centralt udstyr |
|--------------------------|-----------------|
| Indstilling af automatikudstyr, reguleringsparametre osv., decentralt udstyr |
| Afpørvning af tænd/sluk funktioner, inkl. kontrol af grænseværdier og tidsforsinkelser |
| Afpørvning af reguleringsfunktioner og overstyringer, inkl. kontrol af lysniveauer mv. |
| Kontrol af specialfunktioner (rengøring, vøgte, service og lignende) |
| Afpørvning af afhængigheder mellem forskellige zoner og systemer |
| Afpørvning af kommunikation med andet automatikudstyr |
| Dokumentation af afpørvning, check- og indstillingslister |
| Instruktion af driftspersonale |
| Levering af drifts- og vedligeholdsinstruktion |
| Instruktion af brugere |
| Levering af betjeningsvejledninger til brugerne |
| Efterfølgende justeringer af indstillinger på grundlag af brugerensker og driftserfaringer |
| Efterfølgende tilpasning eller flytning af sensorer på grundlag af brugerensker og driftserfaringer |

Andet

| CE-mærkning, hvis nødvendig |
|--------------------------|-----------------|
| Dokumentation til byggesagsbehandling og energimærkning |

Entreprisegrænseskema til brug ved fordeling af opgaverne i et lysstyringsprojekt.
Indregulering af lysstyringer

Krav om indregulering af automatik til lysstyring

Meget få – eller sandsynligvis ingen – automatiksystemer virker af sig selv fra det øjeblik, de er monteret. Der er en række parametre, som skal indstilles (for eksempel tidsforsinkelser, følsomhed eller indstilling af den regulerede størrelse).

Det er en vanskelig proces. På den ene side kan mange parametre ikke indstilles, før byggeriet er færdigt, andre afhænger af individuelle brugerønsker, og endelig er der nogen værdier, som måske må justeres på andre årstider end byggeperioden bestemmer. På den anden side er alt for mange systemer blevet overdraget til brugerne, uden at indregulering har fundet sted – og brugerne får fra starten et dårligt indtryk og vælger måske at slå de automatiske funktioner fra.

Det er vigtigt, at parterne har aftalt, hvem der har ansvaret for indreguleringen – og at der er afsat tid til den. Hvis ikke indregulering kan afsluttes inden overdragelsen til brugerne, bør man informere brugerne om det på en måde, så man undgår den negative reaktion.

Som beskrevet i afsnittet "Introduktion til anvisningen" er det vigtigt, at det er den rigtige funktionsbeskrivelse, der anvendes i alle led i hele projektet. Funktionerne skal derfor beskrives så godt og i et sprog, at alle parter i projektet får den samme opfattelse af, hvordan lysstyringen skal fungere. Funktionsbeskrivelsen skal være så god, at den kan bruges som "manuskript" af alle de, der skal "genfortælle historien" – hver enkelt kan så tilføje sine detaljer og aspekter, men uden at kernen forandres.

I forbindelse med indreguleringen udfærdiges en indreguleringsrapport, hvor indstillingsværdier er angivet.

Checkliste for indregulering af automatik til lysstyring

<table>
<thead>
<tr>
<th>Sensorplacering</th>
<th>Kontroller at alle sensorer er placeret korrekt i forhold til tegninger og/eller vejledninger. Hvis der er uforudsete forhindringer, for eksempel møblement eller skillevægge, må sensoren justeres eller flyttes, så den ønskede funktion sikres.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Tilkøring' af nye armaturer og lysdæmpning</td>
<td>Hvis der er monteret nye armaturer på et system, hvor der skal ske en dæmpning af lyset (lysstyring efter lysniveau eller regulering efter daglys), bør de nye armaturer tændes konstant i 100 timer ved fuld styrke før indregulering påbegyndes (se dog fabrikantens anvisninger).</td>
</tr>
<tr>
<td>Bevægelsesmeldere</td>
<td>Kontroller først sensorplacering (-er) – se ovenfor.</td>
</tr>
<tr>
<td>Dernæst indstilles eventuelt følsomhed og tidsforsinkelsen (tidsrummet for tændt belysning efter sidste registrerede bevægelse). For kombinerede sensorer indstilles også indstillingen af belysningsniveauet. Afprøv funktionen.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kalibrering af lyssensoren</th>
</tr>
</thead>
</table>

Kalibrering af en lyssensor er nødvendig, fordi refleksionsforholdene ikke er ens i alle rum. Det er derfor nødvendigt at indstille lyssensoren til de aktuelle forhold.

Inden kalibrering kontrolleres det, at alle møbler er monteret og indvendige overflader (for eksempel tæpper og vægge) er færdige.

Foretag den nødvendige kalibrering og indstilling af sensor (inklusive eventuel regulator), så det ønskede lysniveau på arbejdspladsen (eller tilsvarende) er opnået. Dette kan kræve indstilling under flere forskellige forhold: i tusmørke (for at simulere regulering ved forhold med lavt dagslys) og i dagtimerne, for at sikre regulering ved fuldt dagslys.

Indstilling ved 'tusmørke' kan evt. ske med helt lukket solafskærmning, gardiner trukket for eller lignende.

I mange tilfælde kan det betale sig at være omhyggelig med indstilling i et typisk rum, og derefter mere eller mindre kopiere indstillingen til lignende rum.

<table>
<thead>
<tr>
<th>Indstilling af tidsprogrammer</th>
</tr>
</thead>
</table>

Indstil de tidsprogrammer, der sty rer rengøringslys og lignende specialfunktioner. Kontroller, at overgangen fra et tidsprogram til et andet fungerer korrekt (for eksempel fra natdrift til rengøringslys og tilbage igen).

<table>
<thead>
<tr>
<th>Overstyringer</th>
</tr>
</thead>
</table>

Kontroller, at kontakter og dæmpere for manuel overstyring er monteret korrekt i forhold til tegninger og vejledninger. Hvis det er nødvendigt stilles grænseværdier, så der ikke kommer for meget lys og så ingen armaturer begynder at blinke eller slukke utilsigtet, fordi der dæmpes 'for meget'. Kontroller korrekt funktion.

<table>
<thead>
<tr>
<th>Betjeningsvejledninger</th>
</tr>
</thead>
</table>

Kontroller, at der er betjeningsvejledninger både til brugere og driftspersonale – se afsnit herom.

Sensorer skal placeres rigtigt

For alle automatiksystemer gælder, at placeringen af sensorer på den ene side har en helt afgørende betydning og på den anden side nødvendigvis må udføres af montøren og tilpasses hvert enkelt lokale.
Det er vanskeligt at give generelle vejledninger. Leverandørenes kataloger, kursusmateriale mv. indeholder ofte anvisninger på placering af konkrete sensorer. Nogle af disse anvisninger, som har en mere generel anvendelighed, er gengivet nedenfor.

Ønsker man en fintfølende bevægelsesmeldere kan det etableres ved at montere flere sensorer, der 'krydser hinanden'. Kilde: Servodan.

Bevægelsesmeldere skal monteres på et fast grundlag og sådan, at der er sikkerhed for at sensoren ikke 'skyder for højt eller for lavt'. Kilde: Servodan.

Eksempel på leverandørvejledning om korrekt placering af en bevægelsesmelder i et møderum. Kilde: Vanpee & Westerberg.

Eksempel på anvisning om placering af sensor, når lyset skal styres efter lysindfaldet målt i vinduet. Kilde: Servodan.

Kalibrering af sensor LRI 8134/00 sammen med Helio lysstyring

Hvorfor kalibrering?
Kalibrering er nødvendig forlydslører da refleksionsforholdene ikke er kendt ved levering af enheden.
Eksempel kunne f.eks. indeholde mørke områder eller tæpper hvorimod et andet kunne indeholde tyse møbler.
Derfor er det nødvendigt at indstille lydtileren til de aktuelle refleksionsforhold via en kalibrering af sensoren.

Kalibrering af lysdeler via trykknap på sensor

<table>
<thead>
<tr>
<th>Trin</th>
<th>Beskrivelse</th>
</tr>
</thead>
</table>
| Trin 1 | Tryk på kalibreringsknappen indtil lysiodde starter med at blinke (hurtigt blink).
| Trin 2 | Tryk på kalibreringsknappen inden for 10 sekunder (lysiodde blinker langsomt).
| | Vent indtil lyset fra amatur går til maksimumsbelysning. |
| Trin 3 | Tryk på kalibreringsknappen igen (lysiodde blinker hurtigt).
| | Gå væk fra området inden for 10 sekunder.|
| | Efter 10 sekunder vil lysiodde stopte med at blinke og kalibrering er foretaget. (Udgangsopændring fra sensor = 4 Vdc). |

Bemærk: Trin 2 og 3 kan undgås, hvis lyset allerede er i maksimumsbelysning.

Afprøvning af lysstyringer

Krav om afprøvning af automatik til lysstyring

En nødvendig forudsætning for at kunne opnå et godt belysningsmiljø og et lavt energiforbrug i en bygning er, at automatikken til styring af belysningen fungerer korrekt. Automatikken bør derfor afprøves både under installationen, når den er færdig og med jævne mellemrum i dens levetid.

I en byggesag er den endelige afprøvning af lysstyringerne en del af kvalitetssikringen og vil i større sager følge byggesagens almindelige regler for kvalitetssikring. Afprøvningen tjener to hovedformål: Den er en "juridisk handling" i forbindelse med byggesagens afvikling og overdragelse til bygherre – og den kan ofte benyttes som et led i instruktionen af det driftspersonale (eller i mindre sager de brugere), som senere skal varetage drift og vedligeholdelse.

I forbindelse med afleveringen skal det eftervises, at anlægget er udført og fungerer i overensstemmelse med det projekt, der er gældende på afleveringstidspunktet. Ved afprøvningen udfærdiges en afprøvningsrapport, som skal dokumentere de gennemførte funktionsafprøvninger og resultaterne heraf og desuden skal indeholde de målte værdier med angivelse af målemetoder, måleinstrumenter og den sandsynlige målefejl.

Det er vigtigt, at parterne har aftalt, hvem der har ansvaret for afprøvningserne – og at der er afsat tid til den. Hvis ikke afprøvningen kan afsluttes inden overdragelsen til brugerne, bør man informere brugerne om det på en måde, så man undgår en negativ reaktion.

Automatikken afprøves som en helhed efter installationen, og den fremgangsmåde der er beskrevet i anvisningen beskæftiger sig ikke med, hvad der foregår internt i elektronikken eller i datakommunikationen.

Som beskrevet i afsnittet "Introduktion til anvisningen" er det vigtigt, at det er den rigtige funktionsbeskrivelse, der anvendes i alle led i hele projektet. Funktionerne skal derfor beskrives så godt og i et sprog, at alle parter i projektet får den samme opfattelse af, hvordan lysstyringen skal fungere. Funktionsbeskrivelsen skal være så god, at den kan bruges som "manuskript" af alle de, der skal "genfortælle historien" – hver enkelt kan så tilføje sine detaljer og aspekter, men uden at kernen forandres.

Kontrolplan

Der bør udformes en plan for kontrol af den installerede automatik. Kontrolplanen bør i almindelighed udformes i lighed med de øvrige kvalitetssikringsprocedurer, der gælder for byggeriet. I det følgende gives eksempler på, hvilke punkter en kontrolplan for lysstyringen kan indeholde og hvordan afprøvningen kan gennemføres.
Inden funktionsafprøvning

Inden funktionsafprøvningen forudsættes det, at de enkelte rum er kontrolleret og godkendt med hensyn til placering og type af belysningsarmaturer, bevægelsesmelder, lyssensor og kontakter, samt at disse er korrekt placeret og er korrekt forbundet til et eventuelt styresystem eller et integreret bygningsautomatiksystem. Det forudsættes også at kontakter ved dør eller arbejdsplads for tænd/sluk/dæmpning er kontrolleret og godkendt; dette gælder også for evt. pc-baseret justeringsinterface.

Funktionsafprøvning

Omfanget af afprøvninger bør fastlægges i udbudsbeskrivelsen/kontrakten.

Da funktionsafprøvning af alle bygningens installationer sjældent er nødvendig, vil det være op til udbyderen at beslutte, hvilke installationer der skal funktionsafprøves og på hvilket niveau. En række faktorer vil være afgørende:

– Installationernes kompleksitet
– Bygningskategori og størrelse
– Bygningens brug
– Om det er nybyggeri eller modernisering
– Investeringsomfang.

Funktionsafprøvning kan for eksempel omfatte:

– Alle funktioner i alle lokaler
– Stikprøver i nogle eller alle lokaler
– Alle funktioner i nogle få lokaler.

Afprøvningen kan foretages af installatøren alene eller i overværelse af tilsynsførende og/eller det kommende driftspersonale. I nogle lande bruger man at lade afprøvningen foretage af en uvildig tredjepart. Dette fastlægges i entreprisegrænseeskemaet.

Efter indstilling og afprøvning bør der foreligge en skriftlig dokumentation (eventuelt digital), som omfatter både indstillede værdier og dokumentation for afprøvningsresultater (både målte værdier og visuelt konstaterede hændelsesforløb) – og dokumentation af, at eventuelle avigelser er udbedret.

Ved funktionsafprøvning konstateres det, om de enkelte komponenter og deres eventuelle samspil med andre komponenter reagerer ud fra givne indstillingsværdier og/eller påvirkninger. Påvirkningerne kan for eksempel være kontaktryk, ændringer i dagslys niveau, personstilstedeværelse m.m. Indstillingsværdier sammenholdes med målte værdier og eventuelle afvigelser noteres. Målte værdier tilvejebringes enten ud fra bygningsautomatiksystemets logfiler eller konstateres på stedet ved visuel konstatering og/eller ved hjælp af passende måleudstyr, dataloggere m.m.

Funktionsafprøvning af en simpel installation

For en mindre kompleks installation kan en afprøvning af installationer og funktioner for eksempel omfatte:

– Inspektion af installation(er) samt konstatering af om specificerede komponenter er installerede
– Kalibrering af sensorer og check af diverse indstillinger
– Simpel funktionsafprøvning efter et afprøvningsskema
– Kontrol af indstilling for drift i og uden for normal arbejdstid
– Check af om driftspersonale/ejere har den fornøjede driftskompetence
– Rapportering af anlæggets tilstand med fokus på fejl og mangler der skal udbedres.
Funktionsafprøvning af en kompleks installation

I en mere kompleks installation – eller installation i en bygning, hvor konsekvenserne af eventuelle fejlfunktioner er uacceptable – udføres en mere omfattende installations- og funktionsafprøvning. Denne kan for eksempel omfatte:

- Gennemgang af komponentspecifikationer og designkriterier så anlæggets samlede funktion kan beskrives, herunder detaljerede fabrikantspecifikationer, komponenters virkemåde, output-specifikationer, indstillinger, indstillinger for brug i og uden for normal arbejdstid m.m.
- Indledende simpel funktionsafprøvning og check af eventuelle startprocedurer
- Omfattende funktionsafprøvning af systemer og tilhørende komponenter f.eks. kontrol af belysningsniveauer ved dagslysstyring, funktionsrækkefølge og kontrol af påvirkning fra andre systemers komponenter.
- Kontrol af om driftsvejledninger forefindes og er ajour både i trykt og elektronisk udgave
- Kontrol af om driftspersonalet har modtaget tilstrækkelig uddannelse i brug af de enkelte anlæg og om de har kendskab til og kan håndtere flere anlægs koordinerede funktioner; for eksempel kendskab til, hvordan separat elektronisk styret solafskærmning influerer på dagslysstyring
- Udarbejdelse eller kontrol af interne vedligeholdelsesplaner eller tilsvarende servicekontrakter. En servicekontrakt bør indeholde en egentlig vedligeholdelsesplan og ikke kun tilkaldeservice i forbindelse med nedbrud
- Rapportering af anlæggets tilstand med fokus på fejl og mangler der skal udbedres samt beskrivelse af eventuelle funktionelle ændringer der findes nødvendige.

Eksempel på plan for afprøvning

Nedenfor gives et eksempel på en plan for afprøvning af lysstyringen i et kontor – eksemplet er bygget over den funktionsbeskrivelse, der tidligere er beskrevet som eksempel 2 på side xx.
<table>
<thead>
<tr>
<th>Oprindelig funktionsbeskrivelse</th>
<th>Indstillinger</th>
<th>Afprøvning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal daglig brug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Den generelle belysning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tænd og sluk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Nogle sensorer i rummet registrerer bevægelser, når der er mennesker tilstede, og tænder automatisk for loftsbelysningen. | Eventuel indstilling af følsomhed | Kontrol af bevægelsesmelder:
 - lyset tænder umiddelbart når person går ind i rummet
 - lyset slukkes efter t_{sluk} minutter
 - at målt tidsforsinkelse (holdetid) t_{sluk} svarer til indstillingsværdi
 - at sensorplacering og følsomhed B_{sens} er tilstrækkelig til ikke at slukke almenbelysning ved stillodesiden-de/arbejdende person |
| Al belysningen slukkes automatisk, når rummet har været ubenyttet et antal minutter. Dette tidsrum kan indstilles i bygningens centrale system. | Indstilling af tidsforsinkelse (holdetid) for sluk, t_{sluk} | |
| **Styring eller regulering af lysnivealet** | Indstilling af ønsket lysniveau, E_{nom} | Kontrol af lysføler eller samspil mellem lysføler og bevægelsesmelder:
 - målt E_{min} for kontorlokale svarer til given indstillingsværdi
 - målt E_{max} for kontorlokale svarer til given indstillingsværdi
 - målt E_{nom} for kontorlokale svarer til given indstillingsværdi
 - almenbelysning tænder automatisk når belysningsniveau er over E_{max} for kontorlokale og der er konstateret persontillistedeværelse |
<p>| Sensoren i rummet har flere funktioner, og måler også lysniveauet. | Indstilling af differens mellem lysniveau for tænding og lysniveau for sluk. | |
| Belysningen tændes ikke, hvis dagslys niveauet er tilstrækkeligt høj. | Alternativt indstilles E_{min} og E_{max}. | |
| Hvis dagslys niveauet ikke er tilstrækkeligt reguleres den generelle belysning til et niveau, som er indstillet af installatøren. | | |</p>
<table>
<thead>
<tr>
<th>Specielle driftsfunktioner</th>
<th>Brugerens overstyring</th>
<th>Indstilling af tidsbegrænsning for overstyring t_{max} minutter (vejledende værdi 2 timer = 120 minutter)</th>
<th>Kontrol af brugerens overstyring:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rengøring</td>
<td>Brugeren kan på lysdæmper ved døren selv indstille det ønskede belysningsniveau - derved sættes automatikken ud af kraft i 2 timer.</td>
<td>t_{max} minutter</td>
<td>Funktion af lysdæmper</td>
</tr>
<tr>
<td></td>
<td>Brugeren kan på kontakt ved døren selv slukke for den generelle belysning i rummet. Ved næste tryk (samme dag) på kontakten kones automatikken ind igen. Automatikken kones i alle tilfælde ind igen kl. 20.</td>
<td></td>
<td>Funktion af trykkontakt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Automatisk genindkobling</td>
</tr>
<tr>
<td>Rengøring</td>
<td>I tidsrummet, hvor rengøring normalt finder sted, tænder lyset automatisk på fuld styrke, når der registreres bevægelse i rummet.</td>
<td>Indstilling af periode for rengøringsfunktionen. I øvrigt som for bevægelsesmelder.</td>
<td>Kontrol af bevægelsesmelder:</td>
</tr>
<tr>
<td>Service</td>
<td>Ved specialfunktion i den centrale automatik kan Rummet tilknyttes servicefunktionen i det cen-</td>
<td></td>
<td>Lyset tænder umiddelbart når person går ind i rummet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I øvrigt som for bevægelsesmelder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kontrol af funktion:</td>
</tr>
</tbody>
</table>

- at reguleringen fungerer – konstateres for eksempel ved at trække gardiner for eller lukke solafskærmning
- almenbelysning slukker automatisk når belysningsniveau er over E_{max} for kontorlokale
- almenbelysning slukker automatisk ved konstateret personfravær efter t_{aut} minutter for kontorlokale
| Vægterfunktion | Under vægterrundering sættes automatikken ud af funktion, sådan at lyset ikke tænder, selv om der registreres bevægelse i rummet. | Rummet tilknyttes vægterfunktionen i det centrale system. | Kontrol af funktion:
– at bevägelsesmelder er overstyret ved aktivering af funktion |
Eksempler på typiske afprøvninger

Nedenfor er angivet nogle få eksempler på typiske afprøvninger. Afprøvninger bør i de konkrete situationer planlægges ud fra den gældende funktionsbeskrivelse.

Kontrol af bevægelsesmelder
Kontrol af bevægelsesmelder bør foretages i et rum, som ikke har været i brug i et passende tidsrum inden afprøvningen. Den simple kontrol af, om lyset tænder og slukker, kan udføres inden bygningen møbleres. Kontrol af, om lyset tænder korrekt og holdes tændt ved stillesiddende arbejde, kan næsten kun udføres i et (prøve-) møbleret rum.

Kontrol i rum med flere bevægelsesmeldere, eller i rum med en kombination af PIR-sensor og akustisk sensor, kan ske efter lignende principper.

- lyset tænder umiddelbart når person går ind i rummet
- lyset slukkes efter t_{sluk} minutter
- at målt tidssensitivitet (holdetid) t_{sh} svarer til indstilling værdi
- at sensorplacering og følsomhed B_{sens} er tilstrækkelig til ikke at slukke almenbelysning ved stillesiddende/arbejdsfælde person

Kontrol af lysregulering
Kontrol af et reguleringssystem må eventuelt foregå af flere omgange: i tusmørke (for at simulere regulering ved forhold med lavt dagslys) og i dagtimerne, for at sikre regulering ved fuldt dagslys.

Afprøvning ved 'tusmørke' kan evt. ske med helt lukket solafskærmning, gardiner trukket for eller lignende.

- målt E_{min} for kontorlokale svarer til given indstilling værdi
- målt E_{max} for kontorlokale svarer til given indstilling værdi
- målt E_{nom} for kontorlokale svarer til given indstilling værdi
- almenbelysning tænder automatisk når belysningsniveau er over E_{min} for kontorlokale og der er konstateret personåbningsindstilling
- at reguleringen fungerer – konstateres for eksempel ved at trække gardiner for eller lukke solafskærmning
- almenbelysning slukker automatisk når belysningsniveau er over E_{max} for kontorlokale
- almenbelysning slukker automatisk ved konstateret personfravær efter t_{sluk} minutter for kontorlokalen

Kontrol af relationer til tilstødende rum
Hvis der, for eksempel af hensyn til tryghed (se Appendiks C) er foreskrevet sammenhæng med styring i tilstødende rum, skal disse også kontrolleres. Det samme gælder rengøringsfunktion, vægtarfundation osv.

- tænder automatisk når belysningsniveau er over E_{min} for gangareal og der er konstateret personåbningsindstilling i kontorlokale
- slukker automatisk når belysningsniveau er over E_{max} for gangareal
- slukker automatisk ved personfravær i kontorlokale efter t_{sluk} minutter for kontor
Brugervejledning om lysstyringer

Krav om gode brugervejledninger

Brugervejledningerne deles i lidt større projekter normalt i to niveauer:
– Vejledning om betjening, pasning og vedligeholdelse – rettet mod driftspersonale og serviceteknikere
– Vejledning til hver enkelt bruger om betjeningen af lysstyringen i det konkrete rum.

Vejledning om betjening, pasning og vedligeholdelse

I projektet skal der angives krav til betjening, pasning og vedligeholdelse. Alle komponenter, der kræver pasning og vedligeholdelse, skal være let tilgængelige og skal projekteres og monteres sådan, at arbejdet kan foretages på en hensigtsmæssig og sikkerhedsmæssigt forsvarlig måde i gældende normer og regler.

Vejledningen skal give de pågældende personer en let overskuelig introduktion til systemerne.

Som beskrevet i afsnittet "Introduktion til anvisningen" er det vigtigt, at det er den rigtige funktionsbeskrivelse, der anvendes i alle led i hele projektet. Funktionerne skal derfor beskrives så godt og i et sprog, at alle parter i projektet får den samme opfattelse af, hvordan lysstyringen skal fungere. Funktionsbeskrivelsen skal være så god, at den kan bruges som "manuskript" af alle de, der skal "genfortælle historien" – hver enkelt kan så tilføje sine detaljer og aspekter, men uden at kernen forandres. Det gælder også, at de funktionsbeskrivelser, som findes i vejledningen til driftspersonale og serviceteknikere, skal opfylde disse krav for at sikre mod misforståelser indbyrdes og i kommunikationen med rummenes "almindelige" brugere.

Vejledning til hver enkelt bruger

Der bør findes en god, klar og letforståelig brugervejledning til den daglige bruger af hvert enkelt rum. I det projekt, som omtalt i afsnittet "Introduktion til anvisningen", har det vist sig, at brugerne ofte slår automatikken fra eller undlader at bruge alle funktionerne, hvis brugerne ikke forstår hensigten og ikke kan betjene udstyret korrekt – evt. kender til mulighederne for individuel tilpasning.

Brugervejledningerne bør derfor, udover den konkrete funktionsbeskrivelse, indeholde oplysninger, der motiverer brugen af udstyret (komfort, sikkerhed, energi). Det er vigtigt, at det er den rigtige funktionsbeskrivelse, der anvendes i alle led i hele projektet. Brugervejledningen skal derfor udføres med udgangspunkt i den funktionsbeskrivelse, som er blevet brugt af projektets parter.
Eksempel på brugervejledning

Det rigtige lys i dit kontor

Du har flere muligheder for at få et godt lys i dit kontor. Og du har flere muligheder for at få netop det lys, som du har brug for. Samtidig er der automatik, som både skal give et godt lys og spare på energien.

Vi har alle forskellige krav til belysningen, afhængigt af det vi skal lave og af alder, syn mv. Det er derfor vigtigt, at du bruger de muligheder, som findes.

På den anden side kan vi spare energi – og andre driftsomkostninger – ved kun at lade lyset være tændt, når der er brug for det, og ved at udnytte dagslyset.

Automatikken er monteret og indstillet efter bedste skøn. Hvis du ønsker at møblere rummet anderledes, sådan at sensoren ikke kan fungere, bør du kontakte viceværten. Det er også ham du skal kontakte, hvis du ikke synes, at automatikken virker, som den skal.

På næste side kan du læse, hvordan du skal betjene lyset i dit kontor.

Kontakter

Ved døren findes lysdæmper og kontakt.
<table>
<thead>
<tr>
<th>Normal daglig brug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Den generelle belysning</td>
</tr>
<tr>
<td>Tænd og sluk</td>
</tr>
<tr>
<td>En sensor i rummet registrerer bevægelser, når der er mennesker tilstede, og tænder automatisk for belysningen.</td>
</tr>
<tr>
<td>Belysningen slukkes automatisk, når rummet har været ubenyttet et antal minutter.</td>
</tr>
<tr>
<td>Regulering af lysniveauet</td>
</tr>
<tr>
<td>Sensoren i rummet har flere funktioner, og måler også lysniveauet.</td>
</tr>
<tr>
<td>Belysningen tændes ikke, hvis daglys niveauet er tilstrækkeligt højt.</td>
</tr>
<tr>
<td>Hvis daglys niveauet ikke er tilstrækkeligt reguleres den generelle belysning til et niveau, som er indstillet af installatøren.</td>
</tr>
<tr>
<td>Brugerens overstyring</td>
</tr>
<tr>
<td>Brugeren kan på lysdæmper ved døren selv indstille det ønskede belysningsniveau - derved sættes automatikken ud af kraft i 2 timer.</td>
</tr>
<tr>
<td>Arbejdslamper</td>
</tr>
<tr>
<td>Tænd og sluk</td>
</tr>
<tr>
<td>Brugeren tænder og slukker selv for arbejdslamper.</td>
</tr>
<tr>
<td>Specielle funktioner</td>
</tr>
<tr>
<td>Rengøring</td>
</tr>
<tr>
<td>I tidsrummet, hvor rengøring normalt finder sted, tænder lyset automatisk på fuld styrke når der registreres bevægelse i rummet.</td>
</tr>
<tr>
<td>Service</td>
</tr>
<tr>
<td>Ved specialfunktion i den centrale automatik kan alt lyset i bygningen tændes på fuld styrke af hensyn til service.</td>
</tr>
<tr>
<td>Vægterfunktion</td>
</tr>
<tr>
<td>Under vægterundergang sættes automatikken ud af funktion, sådan at lyset ikke tænder, selv om der registreres bevægelse i rummet.</td>
</tr>
</tbody>
</table>
Litteratur

DS 700:2005 Kunstig belysning i arbejdslokaler
DS 703:1983 Retningslinjer for belysning i sygehuse
DS 704:1998 Belysning, definitioner
DS 705:2002 Kunstig belysning i tandlægekliniker
DS 707:2001 Idrætsbelysning. Halvcylindrisk belysningsstyrke
DS/EN 12193:2001 Lys og belysning. Sportsbelysning
Summary in English

Will be added later on.
Appendix A

De mest anvendte begreber

<table>
<thead>
<tr>
<th>Begreb</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatisk tilbagestilling</td>
<td>For eksempel tilbagestilling til dagslysregulering efter en vis periode med manuel betjening.</td>
</tr>
<tr>
<td>Belysningsform</td>
<td>Almen belysning, pladsorienteret almen belysning, sær belysning.</td>
</tr>
<tr>
<td>Belysningsstyrke</td>
<td>Belysningsstyrken er et udtryk for, hvor meget synlig stråling (lys), der rammer en flade (lumen pr. m²). Belysningsstyrken angives i lux.</td>
</tr>
<tr>
<td>Bevægelsessensor</td>
<td>Bevægelsessensor og finfølende bevægelsessensor …. Undergruppe i PIR, ultralys, akutiske mv.</td>
</tr>
<tr>
<td>CTS-anlæg</td>
<td>Anlæg for Central Tilstands kontrol og Styring. Systemet kan styre og overvåge de mange tekniske installationer i bygningen.</td>
</tr>
<tr>
<td>Dagslysblokering</td>
<td>Lyset tændes kun, når der ikke er tilstrækkeligt dagslysindfald og slukker automatisk, når dagslysindfaldet kommer over et fastsat niveau.</td>
</tr>
<tr>
<td>Dagslysfaktor</td>
<td>Et mål for, hvor meget dagslys, der er indendørs i forhold til udendørs under fri himmel og uden sol.</td>
</tr>
<tr>
<td>DALI</td>
<td>Digital Addressable Lighting Interface. DALI er en standard for styring af elektroniske reaktorer, lysdæmpere, reléer mm. via digitale signaler. Protokollen er udarbejdet af flere store producenter af elektroniske reaktorer.</td>
</tr>
<tr>
<td>Den indstillede værdi</td>
<td>Den indstillede værdi (på engelsk setpoint) er værdien for det niveau, som man ønsker at opnå, for eksempel et lysniveau.</td>
</tr>
<tr>
<td>Det automatiske udstyr</td>
<td>En sensor (på engelsk sensor) måler den regulerede størrelse – for eksempel en bordflades luminans – og sender værdien til "måleudstyr". Måleudstyret sammenligner den målte værdi med den indstillede værdi og genererer et signal, som aktiverer en ændring.</td>
</tr>
<tr>
<td>EIB</td>
<td>European Installation Bus. EIB er en standard for automatisering af el-tekniske installationer.</td>
</tr>
<tr>
<td>Føler</td>
<td>Se: Sensor</td>
</tr>
<tr>
<td>IHC</td>
<td>Intelligent House Control. I et IHC-anlæg sker styringen via en regulator (på engelsk 'controller'), der typisk er placeret i gruppemøbler. Regulato-</td>
</tr>
</tbody>
</table>
ren virker som et stjernepunkt for alle enhederne, og systemet er vel-regnet til mindre byggerier f.eks. kontormiljøer i mindre bygninger eller parcelhuse. I større bygninger kan flere regulatorer sammenkobles ved hjælp af en 'bus'.

<table>
<thead>
<tr>
<th>Integregt regulerings</th>
<th>Automatikken for solafskærmningen og for den elektriske belysning er integreret i et reguleringsystem.</th>
</tr>
</thead>
</table>
| **Kontinuer dagslysstyring** | I skemaet er valgt betegnelsen 'kontinuer dagslysstyring' som en fælles betegnelse for
- Styring efter lysniveau uden for bygningen (vejrstation)
- Styring efter lysindfaldet gennem vinduet
- Automatisk regulering af lysniveauet.
Valget af den konkrete løsning afhænger af en række faktorer, som beskrevet tidligere i anvisningen. |
| **LON** | Local Operating Network. Et produkt med universel anvendelse inden for alle bygningstekniske installationer såsom el, VVS, CTS, bygningsautomatik og sikringsanlæg. LON bygger på en åben protokol, som er frit tilgængelig for alle, og er skabt hos en verdensomspændende leverandørgruppe. |
| **Luminans.** | En flades luminans er et udtryk for, hvor meget lys den udsender mod øjet. Sammenholdt med omgivelsernes luminans er det et udtryk for, hvor lys fladen ser ud. Luminans måles i candela pr. m², cd/m².
Et hvidt og et sort stykke papir på en bordflade opfattes helt forskelligt, selv om belysningsstyrken er den samme på de to flader. Luminansen alene siger ikke noget om fladens lyshed, men sammenholdt med luminanserne for de øvrige flader i synsfeltet er den et udtryk for, hvor lys fladen opfattes. |
| **Lyssensor** | Lysfølsom sensor. Kan grupperes i sensorer der detekter på dagslys, indfaldende dagslys, kombination af dagslys og kunstlys, "skumringsrelæer" |
| **Lystræm** | Den synlige energi pr. tidsenhed der udsendes fra en lyskilde. Måles i lumen (lm). |
| **Lysstyring** | Lystyring er anvendt som den generelle betegnelse for en kontrol af, at der ikke anvendes mere kunstig belysning end nødvendigt. |
| **Lysstyrke** | Lystæmmen i en given retning inden for en lille rumvinkel betegnes som lysstyrken i denne retning. Lystyrken er således et mål for, hvor meget lys der udsendes i en bestemt retning. Måles i candela (cd). |
| **Regulering** | En regulering (også kaldet en lukket sløjfe) måler aktuelle ændringer i en reguleret størrelse og aktiverer regulatoringsystemet ved at foretage en ændring for at opfylde ønsket til den regulerede størrelse. Denne korrigerede aktivitet fortsætter indtil den regulerede størrelse har opnået sin ønskede værdi indenfor regulatoringsystemets begrænsninger. |
| **Reset** | Se: Automatisk tilbagestilling |
| **Sensor** | Signalgiver i et regulatoringsystem. ’Sensor’ er egentlig en engelsk betegnelse; kaldes på dansk også føler. |
| **Setpoint** | Se: Den indstillede værdi |
| **Skumringsrelæ** | Et skumringsrelæ tænder og slukker belysningen automatisk efter en måling af dagslyset. |
| **Styring** | En styring (også kaldet en åben sløjfe) har ikke nogen direkte forbindelse fra den regulerede størrelse til automatikken. En styring – en åben sløjfe - bygger på en antagelse om, hvordan en ydre påvirkning vil påvirke systemet og justerer systemet for at undgå uacceptable udsving. |
| **Zone** | Et område af belysningen, der styres individuelt eller i afhængighed af andre zoner. |
Appendiks B: Valg af principper i samarbejde med bygherren

Dette projekt har vist, at det er vigtigt, at bygherren, eventuelt fremtidigt driftspersonale og/eller repræsentanter for de kommende brugere deltager i valgte af styringsstrategier og automatikløsninger. Herunder hører, at bygherre m.fl. får information om alternative løsninger – og at diskussionen også inddrager økonomi, energi, brugerkomfort mv. samt fordele og ulemper ved forskellige systemer.

I forarbejdet til denne anvisning har SBi afprøvet et forløb, hvor deltog bygherreens repræsentant, arkitekt, rådgivende ingeniør og automatikleverandør. Her præsenteres et forslag til, hvordan et lignende forløb kan gennemføres i et aktuelt projekt.

Målet

Målet er tilfredse brugere af det færdige byggeri, samtidig med at energirammen overholdes.

Mødernes form og indhold

Kort møderække
Arbejdet gennemføres som en kort møderække – tre møder á 3 timer. Forløbet er 'fremadskridende', så der startes med de grundlæggende forudsætninger – både generelle og for det aktuelle projekt – og afsluttes med beslutning om funktionsbeskrivelser.

Oplæg til møderække
– Møde 1: Fælles forståelse + primære rumtyper + funktion
– Møde 2: Arbejdsplads og belysning – komfort, effektivitet
– Møde 3: Tryghed, helhedsopfattelse osv.
– Møde 4: Automatisk styring og regulering
– Møde 5: Kun "teknikerne": Entreprisegrænser, kontrolplaner, har vi forstået hinanden?

Deltagerne
De inviterede deltagere er: bygherren, eventuelt fremtidigt driftspersonale og/eller repræsentanter for de kommende brugere, arkitekt og rådgivende ingeniør, evt. en inviteret leverandør.

Mødernes indhold

Til hvert møde præsenteres et emne, hvor det faglige indhold forelægges af en af parterne (typisk en af rådgiverne eller en inviteret leverandør).

Ved de tre første møder blev der diskuteret principper og holdninger. Først ved det fjerde møde fremlagde teknikerne udkast til funktionsbeskrivelser, sådan som de er beskrevet i denne anvisning.
Ved det første, indledende møde var indholdet:

1. Interessenter, fælles succeskriterier, væsentlighed
2. Succesanalyse
 - Hvem er interessenterne omkring lysstyringen?
 - Hvem skal have indflydelse på dette "hjørne" af byggeprojektet?
 - Kan der formuleres nogle fælles succeskriterier?
 - Hvilke succeskriterier er kritiske?
 - Kan vi opstille et kriterium for "væsentlighed", som kan bruges i det videre arbejde?

Det første møde

Resultaterne af det første møde kan for eksempel sammenfattes som:

Kriterier for byggeriet er blandt andre:
- Byggeriet skal signalere god kvalitet – men ikke være prangende
- Alle skal have en god oplevelse af lyset
- Alle love og cirkulærer osv. skal være opfyldt
- Byggeriet har en meget lav energiramme i forhold til BR

Kritiske succeskriterier er
- Brugernes mulighed for overstyring skal fungere ved indflytning
- Tryghed; belysning i sene aftentimer skal fungere ved indflytning
- Følerfunktion og følerplacering på i nogle særlige kontorer med en speciel loftsudformning
- God information til de kommende brugere
- Ved ankomst til byggeriet må man ikke være i tvivl om, hvor indgangen er.

Det andet møde

Det tredje møde

Ved det tredje møde blev drøftet alle de 'følelsesmæssige' ønsker til belysningen – og der blev især lagt vægt på at sikre medarbejdernes fornemmelser af tryghed.

Resultaterne af dette møde er omtalt i Appendiks C: Overvejelser om tryghed for brugerne.

Det fjerde møde

Ved det fjerde møde fremlagde teknikerne udkast til funktionsbeskrivelser, sådan som de er beskrevet i denne anvisning. Disse udkast blev diskuteret og bearbejdet, og vigtigheden af, at det er den rigtige funktionsbeskrivelse, der anvendes i alle led i hele projektet blev understreget.

Som resultat af mødet var der enighed om, at funktionerne skal beskrives så godt og i et sprog, at alle parter i projektet får den samme opfattelse af, hvordan lysstyringen skal fungere. Funktionsbeskrivelsen skal være så god, at den kan bruges som "manuskript" af alle de, der skal "genfortælle historien" – hver enkelt kan så tilføje sine detaljer og aspekter, men uden at kernen forandres.

Efter mødet udarbejdede teknikere de endelige funktionsbeskrivelser.
Det femte møde
Ved det femte møde deltog kun teknikerne. Teknikerne drøftede blandt andet: Entreprisegrænser, kontrolplaner, har vi forstået hinanden?
Appendix C: Overvejelser om tryghed for brugerne

I forbindelse med forarbejdet til denne anvisning har SBI afprøvet systematikken i forbindelse med et konkret byggeprojekt. Det viste sig undervejs at være meget vigtigt for brugerne og bygherren: at automatisk styring af belysningen blev diskuteret og bearbejdet ud fra hensynet til de kommende brugerens oplevelse af 'trygheden i byggeriet'.

Da trygheds-problematikken er meget knyttet til det aktuelle byggeri, har vi ikke fundet det muligt at indarbejde disse hensyn i anvisningens skemaer. I stedet beskrives her nogle af de overvejelser, vi har mødt undervejs, i håbet om, at de kan inspirere andre til en diskussion af disse hensyn.

Det er i den sammenhæng vigtigt, at teknikerne respekterer og tænker på de medarbejdere (eller skoleelever eller andre, afhængigt af bygnings karakter), som måtte have særligt vanskeligt ved at færdes trygt om natten – måske fordi de har nedsat syn eller hørelse eller på anden måde oplever et særligt behov for belysning, der kan bidrage til at skabe trygge rammer.

"Er her andre?"

Mange, som arbejder før eller efter normal arbejdstid, kan føle et ubehag ved at sidde i eget, oplyst kontor, mens resten af bygningen er mørk og tom. Denne oplevelse kan reduceres ved, at der er lys på gangarealer uden for de kontorer, hvor den pågældende opholder sig.

Hvis bygningen har et centralt system kan dette for eksempel løses ved, at gangbelysningen tændes i de områder, hvor bevægelsesmeldere registrerer personer.

Et stort mørkt kontor

Storrumskontorer kan virke uvenlige, hvis der kun er lys lige ved ens eget bord og resten af lokalet er mørkt.

Situationen kan bedres ved for eksempel at lade bevægelsesmeldere tænde lyset ikke bare i egen zone men også i nabozoner, og eventuelt ved at lade nogle lamper oplyse vægflader i hele kontoret.

"Står der nogen og gemmer sig?"

Det kan være svært at komme eller gå uden for normal arbejdstid og i mørke.

Situationen kan bedres ved for eksempel at lade bevægelsesmeldere omkring indgangsdørene tænde lys både inden for og uden for i et område omkring dørene.

Eventuelt ved at lade åbning af døren styre tænding af lys på parkeringsplads eller lignende, sådan at der er lys hele vejen hen til egen bil eller til grunden forlades.