Principles and Practice of Cleaning in Place

Graham Broadhurst
BRIGGS of Burton INC
Contents

• CIP/SIP – Definitions / Function
• Principles of CIP
• CIP Detergents
• CIP Systems
• Vessel CIP
• Mains CIP
• Monitoring/Control
CIP / SIP - Definition

• CIP = Cleaning in Place
 – To clean the product contact surfaces of vessels, equipment and pipework in place. i.e. without dismantling.

• SIP = Sterilise in Place
 – To ensure product contact surfaces are sufficiently sterile to minimise product infection.
How CIP Works

• **Mechanical**
 – Removes ‘loose’ soil by Impact / Turbulence

• **Chemical**
 – Breaks up and removes remaining soil by Chemical action

• **Sterilant/Sanitiser**
 – ‘Kills’ remaining micro-organisms (to an acceptable level)
Factors affecting CIP

- Mechanical
- Chemical
- Temperature
- Time
CIP Operation

• PRE-RINSE
 - Mechanical Removal of Soil

• DETERGENT
 - Cleaning of Remaining Soil
 - Caustic, Acid or Both

• FINAL RINSE
 - Wash Residual Detergent/Soil

• STERILANT/SANITISER
 - Cold or Hot
Typical CIP Times

<table>
<thead>
<tr>
<th></th>
<th>Vessel CIP</th>
<th>Mains CIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Rinse</td>
<td>10 to 20 mins</td>
<td>5 to 10 mins</td>
</tr>
<tr>
<td>Caustic Detergent</td>
<td>30 to 45 mins</td>
<td>20 to 30 mins</td>
</tr>
<tr>
<td>Rinse</td>
<td>10 to 15 mins</td>
<td>5 to 10 mins</td>
</tr>
<tr>
<td>Acid Detergent</td>
<td>20 to 30 mins</td>
<td>15 to 20 mins</td>
</tr>
<tr>
<td>Rinse</td>
<td>15 to 20 mins</td>
<td>10 to 15 mins</td>
</tr>
<tr>
<td>Sterilant</td>
<td>10 to 15 mins</td>
<td>5 to 10 mins</td>
</tr>
</tbody>
</table>
Typical CIP Temperature

- Brewhouse Vessels: Hot 85°C
- Brewhouse Mains: Hot 85°C
- Process Vessels: Cold < 40°C
- Process Mains: Hot 75°C
- Yeast Vessels: Hot 75°C
- Yeast Mains: Hot 75°C
CIP Detergent - Requirements

- Effective on target soil
- Non foaming or include anti-foam
- Free rinsing / Non tainting
- Non corrosive – Vessels/pipes, joints
- Controllable - Conductivity
- Environmental
Caustic Detergents

• Advantages
 – Excellent detergency properties when “formulated”
 – Disinfection properties, especially when used hot.
 – Effective at removal of protein soil.
 – Auto strength control by conductivity meter
 – More effective than acid in high soil environment
 – Cost effective

• Disadvantages
 – Degraded by CO₂ forming carbonate.
 – Ineffective at removing inorganic scale.
 – Poor rinsability.
 – Not compatible with Aluminium
 – Activity affected by water hardness.
Acid Detergents

• Advantages
 – Effective at removal of inorganic scale
 – Not degraded by CO2
 – Not affected by water hardness
 – Lends itself to automatic control by conductivity meter.
 – Effective in low soil environment
 – Readily rinsed

• Disadvantages
 – Less effective at removing organic soil. New formulations more effective.
 – Limited biocidal properties - New products being formulated which do have biocidal activity
 – Limited effectiveness in high soil environments
 – High corrosion risk - Nitric Acid
 – Environment – Phosphate/Nitrate discharge
Detergent Additives

• Sequestrants (Chelating Agents)
 – Materials which can complex metal ions in solution, preventing precipitation of the insoluble salts of the metal ions (e.g. scale).
 – e.g. EDTA, NTA, Gluconates and Phosphonates.

• Surfactants (Wetting Agents)
 – Reduce surface tension – allowing detergent to reach metal surface.
Sterilant / Sanitiser Requirements

- Effective against target organisms
- Fast Acting
- Low Hazard
- Low Corrosion
- Non Tainting
- No Effect On Head Retention
- Acceptable Foam Characteristics
Sterilants / Sanitisers

- Chlorine Dioxide
- Hypochlorite
- Iodophor
- Acid Anionic
- Quaternary Ammonium
- Hydrogen Peroxide
- PAA (Peroxyacetic Acid) – 200-300 ppm
CIP Systems

• Single Use
 – Water/Effluent/Energy costs

• Recovery
 – Detergent Recovery
 – Rinse/Interface Recovery

• Tank Allocation

• Number of Circuits
Single Use CIP Systems
Recovery CIP Systems

1 x Supply – 3 Tank System

Water

Final Rinse Tank

Pre-Rinse Tank

Caustic Tank

CIP Return / Recirc

CIP Supply / Recirc

LSH

LSL

Flow

Conductivity

CIP Return

CIP Supply

Steam

CIP Heater

Temp

Temperature

Flow

Acid

Sterilant

CIP Supply / Recirc Pump
Recovery CIP Systems
2 x Supply – 4 Tank System – Separate Recirc
Recovery CIP System
Single Use vs Recovery

- Single Use CIP
 - Low Capital Cost
 - Small Space Req.
 - Low Contamination Risk
 - Total Loss
 - High Water Use
 - High Energy Use
 - High Effluent Vols.
 - Longer Time/Delay
 - Use for Yeast

- Recovery CIP
 - High Capital Cost
 - Large Space Req.
 - Higher Contamination Risk
 - Low Loss
 - Low Water Use
 - Low Energy Use
 - Low Effluent Vols.
 - Shorter Time/Delay
 - Use for Brewhouse & Fermenting
CIP Systems
CIP Tank Sizing

• Pre-Rinse
 – CIP Flow x Time

• Detergent
 – Vol of CIP in Process Mains & Tank + Losses

• Final Rinse
 – Flow x Time – Water Fill
CIP Systems
Practical Points

• CIP Supply Pump
• Recirculation
 – Shared/Common with CIP Supply, or
 – Dedicated to Tank
• CIP Supply Strainer
• CIP Return Strainer
• CIP Tank Connections
Types of CIP

- VESSEL CIP
 - Sprayhead Selection
 - Scavenge Control
- MAINS CIP
 - Adequate Velocity
 - Total Route Coverage
- BATCH/COMBINED CIP
 - Complex Control
 - Time Consuming
Vessel CIP

- Flow of CIP fluid from CIP supply to vessel sprayhead
- Internal surfaces cleaned by spray impact / deluge
- Return from vessel by CIP scavenge (return) pump
Vessel CIP - Sprayheads

- Static Sprayballs
 - High Flow / Low Pressure
- Rotating Sprayheads
 - Low Flow / Medium Pressure
- Cleaning Machines
 - Low Flow / High Pressure
 - High Impact
Vessel CIP – Sprayballs

- **Advantages**
 - No moving parts
 - Low Capital Cost
 - Low pressure CIP supply
 - Verification by Flow

- **Disadvantages**
 - High Water & Energy Use
 - High Effluent volumes
 - Limited throw – Small vessels
 - Spray Atomises if Pressure High
 - No impact - long CIP time and/or high detergent strength
 - Higher absorption of CO₂ by caustic
Vessel CIP – Rotary Sprayheads

• Advantages
 – Not too Expensive
 – Some Mechanical Soil Removal
 – Lower Flow
 – Reasonable Water/Energy Usage
 – Reasonable Effluent

• Disadvantages
 – Moving parts
 – Limited throw – Small vessels
 – Possible blockage
 • Rotation verification
 • Supply strainer
Vessel CIP – Cleaning Machines

• Advantages
 – High impact, aggressive cleaning
 – Good for heavy duty cleaning
 – Low water/energy use
 – Low effluent
 – Effective in large vessels
 – Lower absorption of CO2 by caustic
 – Lower Flow means smaller Pipework
Vessel CIP – Cleaning Machines

• Disadvantages
 – Expensive
 – Moving parts
 – High pressure CIP supply pump
 – Possible blockage
 • Rotation verification
 • Supply strainer
Mains CIP

- Flow of CIP fluid from CIP supply, through process pipework and back to CIP set
- The entire process route must see turbulent CIP Flow
- No/Minimal Tees/dead legs
- Isolate from other process lines
Mains CIP
Turbulent & Laminar Flow
Mains CIP
Turbulent & Laminar Flow

• Turbulent Flow
 – Flat velocity profile
 – Thin Boundary layer
 – Effective CIP

• Laminar Flow
 – Streamline flow
 – Velocity profile, faster at centre
 – Ineffective CIP

Thin Boundary Layer at pipe wall
Mains CIP

- Turbulent Flow –
 - Re > 3000

- Minimise Boundary layer –
 - Laminar layer on internal pipe wall

- Minimum CIP velocity (in process pipe) \(\geq 1.5 \text{ m/s} \).

- Excessive velocity
 - High Pressure drop / Energy input
Mains CIP – CIP Flow

<table>
<thead>
<tr>
<th>Process Pipe dia (mm)</th>
<th>Minimum CIP Flow (m³/h)</th>
<th>CIP Supply / Return dia (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2.1</td>
<td>25</td>
</tr>
<tr>
<td>38</td>
<td>5.2</td>
<td>38</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>65</td>
<td>16</td>
<td>65</td>
</tr>
<tr>
<td>75</td>
<td>24</td>
<td>65</td>
</tr>
<tr>
<td>100</td>
<td>42</td>
<td>75</td>
</tr>
<tr>
<td>125</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>200</td>
<td>170</td>
<td>150</td>
</tr>
<tr>
<td>250</td>
<td>280</td>
<td>200</td>
</tr>
<tr>
<td>300</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>350</td>
<td>520</td>
<td>250</td>
</tr>
<tr>
<td>400</td>
<td>700</td>
<td>250</td>
</tr>
</tbody>
</table>

Min CIP Velocity 1.5 m/s minimum

Based on o/d tube to 100 mm and metric I/d above 100 mm.
Process Pipework Design for CIP

- Ensure Total Route coverage
 - Avoid Split routes
- Avoid Dead ends
- Avoid Tees
- Most Critical on Yeast & nearer packaging
Process Pipework Design for CIP

- Isolate CIP from Process
 - Mixproof Valves
 - Flowplates
Batch/Combined CIP

• Combines CIP of
 – Vessel/s and
 – Pipework in one clean

• Why?
 – Pipework too large for ‘mains’ CIP
 e.g. Brewhouse 200 to 600 mm.
 – Pipework linked to Vessel
 e.g. Recirculation Loop or EWH.
Batch/Combined CIP

• Supply of a batch volume of CIP to process vessel
• Internal recirculation of CIP within/through process vessel
• Transfer of CIP to next vessel
• Pumped return of CIP batch volume to CIP set.
CIP Monitoring & Control On-Line

- Detergent Temperature
- Detergent Strength - Conductivity
- Return Conductivity
 - Detergent Start Interface
 - Detergent End Interface
 - Rinse Conductivity
- Return Flow
- Recirc/Return Time
- Supply Pressure
CIP Monitoring & Control Off-Line

- Visual Inspection
- Final Rinse return sampling
 - pH
 - Micro
 - ATP
- Vessel/Pipework swabs
 - pH
 - Micro
 - ATP
Principles and Practice of Cleaning in Place