

Conditioning of a Plus-energy House Using Solar Systems for Both Production of Heating and Nighttime Radiative Cooling

Master thesis presentation – September 11^{th}

Luca Gennari – s121590

s121584 – Thibault Péan

I. SDE2014 -EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Solar Decathlon Europe 2014

1. Architecture	120 pts
2. Engineering and Construction	80 pts
3. Electrical Energy Balance	120 pts
4. Energy Efficiency	80 pts
5. Comfort Conditions	120 pts
6. House Functioning	120 pts
7. Communication and Social Awareness	80 pts
8. Urban Design, Transportation and Affordability (UDTA)	120 pts
9. Innovation	80 pts
10. Sustainability	80 pts

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Solar Decathlon Europe 2014

1. Architecture	120 pts
2. Engineering and Construction	80 pts
3. Electrical Energy Balance	120 pts
4. Energy Efficiency	80 pts
5. Comfort Conditions	120 pts
6. House Functioning	120 pts
7. Communication and Social Awareness	80 pts
8. Urban Design, Transportation and Affordability (UDTA)	120 pts
9. Innovation	80 pts
10. Sustainability	80 pts

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Solar Decathlon Europe 2014

1. Architecture

2. Engineering and Construction

3. Electrical Energy Balance

4. Energy Efficiency

5. Comfort Conditions

6. House Functioning

7. Communication and Social Awareness

8. Urban Design, Transportation and Affordability (UDTA)9. Innovation10. Sustainability Indoor temperature range: T_{av} -1 < T_{indoor} < T_{av} +1

+ Humidity, CO₂, VOCs and formaldehyde criteria

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Solar Decathlon Europe 2014 Cité du Soleil - Versailles

EMBRACE Team DTU

I. SDE2014 -**EMBRACE**

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

•Integration on rooftops to densify cities

- Small dwelling
- •Thermal envelope: 4 modules
- Sheltered garden acting as a buffer zone

Conditioning of a Plus-energy House using Solar Systems for both Production of Heating and Nighttime Radiative Cooling

Envelope

8

<u>I. SDE2014 –</u> EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

•Integration on rooftops to densify cities

- Small dwelling
- •Thermal envelope: 4 modules
- Sheltered garden acting as a buffer zone

Conditioning of a Plus-energy House using Solar Systems for both Production of Heating and Nighttime Radiative Cooling 9

<u>I. SDE2014 –</u> EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

•Integration on rooftops to densify cities

Small dwelling

•Thermal envelope: 4 modules

• Sheltered garden acting as a buffer zone

<u>I. SDE2014 –</u> EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

•Integration on rooftops to densify cities

Small dwelling

•Thermal envelope: 4 modules

• Sheltered garden acting as a buffer zone

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

• Integration on rooftops to densify cities

- Small dwelling
- •Thermal envelope: 4 modules
- Sheltered garden acting as a buffer zone

Conditioning of a Plus-energy House using Solar Systems for both Production of Heating and Nighttime Radiative Cooling 12

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Construction	U-value (W/m ² K)
External wall	0,08
Roof	0,085
External floor	0,1
Internal walls	0,38
Internal floor	0,25
Glazing 1 st type	U-window 0,83
Glazing 2 nd type	U-window 0,79

Conditioning of a Plus-energy House using Solar Systems for both Production of Heating and Nighttime Radiative Cooling 13

Introduction COLLECTORS LOOP NILAN COMPACT P UNIT I. SDE2014 -**EMBRACE** II. HVAC Electrical III. Radiant floor -. backup coil **IV.** Performance Ν. Solar panels V. Nighttime radiative cooling DHW tank Discussion 180L

Conclusion

Realized system: DHW/Ventilation

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Realized system: storage/delivery

DTU

Introduction

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Realized system: emission/regulation

Heat pump

DTU

Heat pump

Introduction

DTU

Ħ

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

I C I E E

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

Heat flux q (W/m²)

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Radiant floor – EN 1264

Δϑ_H = |T_{room}-T_{average water}| (°C) — Heating, tiles — Heating, wood 7 mm — Heating, wood 15 mm

Conditioning of a Plus-energy House using Solar Systems for both Production of Heating and Nighttime Radiative Cooling 26

Cooling, tiles

Cooling, wood 7 mm

Cooling, wood 15 mm

Introduction I. SDE2014 –

EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Radiant floor - EN 1264

Determination of the water supply temperature

Surface temperature in the range 20-24°C, no condensation problem

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Comparison standard – HEAT2

Case of the tiles as floor covering

q (W/m²)	$\Delta \vartheta$ heating = 7,9°C	$\Delta \vartheta$ cooling = 8,6°C
EN 1264	50,1	39,5
HEAT2	46	39,9

Results – Energy production

=> Plus-energy house

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

	Operative Temperature	
Range	Competition range (±1°C) based on EN15251	Lower limit not considered
Percentage of time outside the range	27 %	2 %

at 1 shiel 1 both as to be			
	\bigcap	NH MAN	

	Relative Humidity	CO ₂ level
Range	40% < RH < 55%	< 800 ppm
Percentage of time outside the range	6%	11 %

Results – Comfort Conditions

Competition rankings

muouucuon				
I. SDE2014 – EMBRACE	Sub contest	Points earned by Team DTU	Ranking of Team DTU	
II. HVAC III. Radiant floor	Electrical Energy Balance	79,22 / 120	#7	
V. Performance	Energy Efficiency	71,84 / 80	#9	
V. Nighttime radiative cooling	Comfort Conditions	99,23 / 120	#8	
Discussion	•••			
Gonerasion	TOTAL	780,01 / 1000	#8	

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

<u>V. Nighttime</u> radiative cooling

Discussion

Conclusion

Nighttime radiative cooling

Unglazed collector vs. photovoltaic thermal (PVT)

<u>Outputs</u>: cooling power (W/m²), energy (kWh), COP (-)

ICIEE

ICIEE

Conditioning of a Plus-energy House using Solar Systems for both Production of Heating and Nighttime Radiative Cooling 38

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

<u>V. Nighttime</u> radiative cooling

Discussion

Conclusion

Theory – Longwave thermal radiation

Otherwise

ε_{sky}

I C I E E

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

<u>V. Nighttime</u> radiative cooling

Discussion

Conclusion

Theory

Plane radiant & surface temperatures Weather data

Cooling powers

VFS - Water

Supply flow and temperature Returns flows and temperatures

Heat flux sensors

Experiment results

Experiment results

I. SDE2014 -**EMBRACE**

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Experiment results: Radiation vs. Convection

August 20th – Clear sky

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

<u>V. Nighttime</u> radiative cooling

Discussion

Conclusion

Experiment results: Radiation vs. Convection

August 20th – Clear sky

Experiment results

Introduction		PVT	Unglazed collector
II. HVAC	Cooling power (average per night)	28 to 74 W/m ²	20 to 72 W/m ²
II. Radiant floor	Cooling power (literature)	60 to 65 W/m ²	$\sim 50 \text{ W/m}^2$
V. Performance	Cooling COP	19 to 58	
<u>V. Nighttime</u> adiative cooling			
Discussion	Heating power (average Aug 28 th)	247 W/m ²	241 W/m ²
Conclusion	Heating energy (Aug 28 th)	9,25 kWh	5,74 kWh

TRNSYS vs. Experiment

III. Radiant floor

IV. Performance

<u>V. Nighttime</u> radiative cooling

Discussion

Conclusion

Comparison for August 13^{th}

<u>EMBRACE</u>

- Introduction
- I. SDE2014 EMBRACE

II. HVAC

- III. Radiant floor
- IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Discussion

- Time issues/ difficult central control \rightarrow changes
- Competition rules
- High consumption per $m^2 \rightarrow consumption$ per person

Nighttime radiative cooling

- Inaccuracies in the measurements (VFS, rain)
- Limited potential in Denmark

<u>EMBRACE</u>

- Introduction
- I. SDE2014 EMBRACE
 - II. HVAC
- III. Radiant floor
- IV. Performance
- V. Nighttime radiative cooling
 - Discussion
 - <u>Conclusion</u>

- EMBRACE ranking: #8
- Good performance in Comfort Conditions, Energy Efficiency and Electrical Energy Balance

Conclusion

Nighttime radiative cooling

- High savings potential in cooling (high COP)
- Economical potential (PVT, unglazed)
 - Possibility of utilizing existing solar installations
 - Residential use in Southern climates
 - Public buildings use in Denmark

I. SDE2014 – EMBRACE

II. HVAC

III. Radiant floor

IV. Performance

V. Nighttime radiative cooling

Discussion

Conclusion

Future research

- Sheltered garden
- Potential of nighttime radiative cooling in different climates
- Coupling with PCM
- Coupling with heat pump condenser

