

13th IIR GUSTAV LORENTZEN CONFERENCE ON NATURAL REFRIGERANTS

Valencia, SPAIN - 18th - 20th June 2018

DANISH **TECHNOLOGICAL** INSTITUTE

Jóhannes Kristófersson Danish Technological Institute Kongsvang Allé 29 - DK-8000 Aarhus C , Denmark jkri@teknologisk.dk

ENERGY OPTIMIZATION OF BATCH FREEZING TUNNEL FOR MEAT

INTRODUCTION

Project goals

- Optimize the running condition of a batch freezing tunnel
- 30% savings in energy consumption

Equipment

- Industrial batch tunnel freezer
- Laboratory test tunnel built into a container

Looked at in the project

- Adjusting the air flow in the freezer • Distributing the air flow throughout the
- freezer
- Freezer spacers

Done by using

- CFD simulations
- Models
- Industrial tunnel
- Test tunnel built into a container. A scale down version of the industrial tunnel

• Cycle time of the products

investigated: 36 hours

• The site has 11 tunnels

Optimization process

- Find potential improvements by using models, CFD simulations
- Verification in test freezing tunnel
- Verification in industrial freezing tunnel
- Minimizing energy consumption or reducing freezing time

Prospects for Denmark

- 1,500,000 tons frozen in tunnel freezers per year
- The tunnel freezers use 220 GWh of electrical
- energy
- The estimated 30% savings lead to 66 GWh savings per year

TEST SETUP

The industrial freezer

- Ammonia as refrigerant • 20 pallets in each row
- 4 rows in height

80 pallets in total

The test tunnel freezer

• Used CFD to verify the down • CO, used as refrigerant Scaled down version of the industrial freezer • 3 pallets and 1 row scaling

The freezer spacers tested

• Wooden air spacer

New Neptun freezer spacer NFS-II

Figure 1: Start from top left – fans, four tunnels, product pallets, product conveiers, Below - a look inside the tunnel, where the air stream returns, and the tunnel seen from above. Figure 2: Test setup built into a container. Right - the layout seen from above.

Figure 3: Test container in laboratory

Figure 5: The third product pallet Figure 4: Evaporator coil and fan and return air channel

The simulated product pallet in the test tunnel

• Water in the boxes Box size 600x400x150 mm

• 6 rows with freezer spacers in between placed on a Euro pallet

0,0%

60,0%

Figure 6: Shaded boxes represent the ones with temperature sensors at three levels

MEASUREMENTS AND RESULTS

Optimization

- Minimizing the energy consumption by utilizing the logistic freezing time
- The time, which the product stays in the freezer, is mostly fixed by the loading and unloading logistics around the freezer and not the actual freezing temperature of the products

Optimizing parameters

Air flow • Changing the air flow in the freezer to utilize the logistic freezing time of 36 hours

Air distribution

Test T3 and T4

Increased freezing time 3.0/1.3 • Considerable energy savings: • The air flow controlled by the hours - though within the 36-60% / 38.8%. temperature out of the last hour window pallet

	Test no.	Air flow	Fi	reezing tir	ne	Energy usage					
			Total Impovements		ements	Fan	Ref sys	Total	Improv	ements	
		[m³/s]	[h]	[h]	[%]	[kWh]	[kWh]	[kWh]	[kWh]	[%]	
Reference	T7a - T7e	6,5	29,8	0,0	0,0%	56,7	24,7	81,4	0,0	0,0%	
Fan control.	Т3	4,2/5,0/6,5	33,5	-3,7	-12,6%	42,8	18,6	61,4	19,9	24,5%	
Variable flow	T4	6,5/4,0/6,5	34,5	-4,7	-15,9%	33,6	14,6	48,2	33,1	40,7%	

Table 1: Freezing time and energy savings when controlling the air flow by the temperature of the air from the last pallet.

Test T5 and T6

Increased freezing time 3.7/4.7 • Considerable energy savings: The air flow increased in fixed hours - though within the 36-24.5% / 40.7%. steps hour window

	Air flow	Freezing time	Energy usage

Air flow

• Distributing the air flow through the freezer to get more air flow through the products

Freezer spacer

• Using another type of freezer spacers

Method

- Establishing a reference case
- Changing the air flow or the air distribution and compare the results to the reference case

Energy savings for the fan contribute

- Direct energy savings due to lower consumption
- Indirect energy savings due to additional cooling done by the refrigeration system to remove the extra fan energy
- COP of the refrigeration system is estimated to be 2.3

Test no. Total Ref sys Total Improvements Impovements Fan [m³/s] [h] [%] [kWh] [kWh] [kWh] [kWh] [%] [h] T7a - T7e 6,5 29,8 0,0% 56,7 24,7 81,4 0,0 Reference 0,0 -10,2% 22,7 6,5/4,2 T5 32,8 -3,0 9,9 32,6 48,8 Fan control. Variable flow T6 6,5/3,95 31,1 -1,3 -4,5% 34,7 15,1 49,8 31,6 38,8%

Table 2: Freezing time and energy savings when controlling the air flow.

Test T9

• The first pallet in the test • Reduced freezing time by 3.0 • Energy usage nearly the same tunnel is moved closer to the hours

fan

	Test no.	Air flow	Freezing time			Energy usage				
			Total [h]	Impovements		Fan	Ref sys	Total	Improvements	
		[m³/s]		[h]	[%]	[kWh]	[kWh]	[kWh]	[kWh]	[%]
Reference	T7a - T7e	6,5	29,8	0,0	0,0%	56,7	24,7	81,4	0,0	0,0%
Air	Т9	6,5	26,8	3,0	9,9%	57,8	25,1	82,9	-1,6	-1,9%

Table 3: Freezing time and energy savings when moving the pallets closer to the fan compared to the reference case.

Test T11 and T11b

- Using baffles to direct the air Reduced energy usage for the Reduced freezing time by 3.2 reduced air flow by 67.7% hours with same air flow as flow
- Second run to try to match the for reference case freezing time of the reference case

	Test no.	Air flow	Fr	eezing tin	ne	Energy usage					
			Total	al Impovements		Fan	Ref sys	Total	Improv	ements	
		[m³/s]	[h]	[h]	[%]	[kWh]	[kWh]	[kWh]	[kWh]	[%]	
Reference	T7a - T7e	6,5	29,8	0,0	0,0%	56,7	24,7	81,4	0,0	0,0%	
	T11	6,5	26,6	3,2	10,6%	56,6	24,6	81,2	0,1	0,2%	
	T11b	4,1	30,8	-1,0	-3,5%	18,3	8,0	26,3	55,1	67,7%	

Table 4: Freezing time and energy savings when using baffles compared to the reference case.

Figure 9: Air flow 6.5m³/s contour lines. To the left, the reference case and to the right, pallets closer to the fan making space after pallet 3.

CONCLUSION

Test T7 and T8	Test T14 and T17						
 The air flow fixed throughout 36 hours 	Freezing time vs. air flow	 The air flow fixed throughout 36 hours 	Freezing time vs. air flow				
 The freezing time to reach –20°C and the energy 	38,00 90,00 90,00	 The freezing time to reach –20°C and the energy 	33,00 450,00				

to fans snown for the tested air flow rates

- Total energy savings of 86% compared to reference case
- 80% savings are obtained at a freezing time just above 34 hours by using half the air flow compared to the reference case, i.e. 3.75m³/s

Figure 10: Total freezing time and energy usage of fan for various air flows for wooden spacers.

Air flow

- Reducing air flow saves considerable amount of energy
- 86 percent energy savings when utilizing the 36 hours freezing time
- First part of the air flow reduction is most important
- 80 percent savings can be obtained by halving the air flow and two hours of safety on the freezing time still remain

Freezing spacers

- Reduces the freezing time for the same energy usage
- Energy savings of 45 percent is obtained for the same freezing time for wooden freezer spacer and NFSII

Air distribution

- 67.7 percent energy savings by using baffles for the same freezing time
- 93 percent energy savings can be obtained by combining baffles and reducing the air flow

to fans shown for the tested air flow rates

- Reduction in freezing time compared to wooden spacers is 2.2 hours
- Energy savings of 46kWh if same freezing time, i.e. 45% savings
- Unrealistic to increase the air speed to shorten the freezing time from 36 hours to 24 hours

Figure 11: Total freezing time and energy usage of fan for various air flow for NFSII spacers.

General conclusion

• Energy savings obtained in the project are higher than the ones stated in the project goals • Measurements are now being conducted at the site to verify the findings of the project